
massachusetts institute of technology - artificial intelligence laboratory

Teaching an Old Robot New Tricks:
Learning Novel Tasks via Interaction
with People and Things

Matthew J. Marjanovic

Al Technical Report 2003-013 June 2003

(02003 massachusetts institute of technology, cambridge, ma 02139 usa - wwn. ai.mituedu

UIS TRiBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Teaching an Old Robot New Tricks:

Learning Novel Tasks via Interaction

with People and Things

by

Matthew J. Marjanovik'

S.B. Physics (1993),
S.B. Mathematics (1993),

S.M. Electrical Engineering and Computer Science (1995),
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

Massachusetts Institute of Technology 2003.
All rights reserved.

Certified by: Rodney Brooks
Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

2

Teaching an Old Robot New Tricks:
Learning Novel Tasks via Interaction

with People and Things
by

Matthew J. Marjanovi6

Submitted to the Department of Electrical Engineering and Computer
Science on May 27, 2003, in partial fulfillment, of the requirements for

the degree of Doctor of Philosophy

Abstract

As AI has begum to reach out beyond its symbolic, objectivist roots
into the embodied, experientialist realm, many projects are exploring
different aspects of creating machines which interact with and respond
to the world as humans do. Techniques for visual processing, object
recognition, emotional response, gesture production and recognition,
etc., are necessary components of a complete humanoid robot. How-
ever, most projects invariably concentrate on developing a few of these
individual components, neglecting the issue of how all of these pieces
would eventually fit together.

The focus of the work in this dissertation is on creating a frame-
work into which such specific competencies can be embedded, in a way
that they can interact with each other and build layers of new func-
tionality. To be of any practical value, such a framework must satisfy
the real-world constraints of functioning in real-time with noisy sensors
and actuators. The humanoid robot Cog provides an unapologetically
adequate platform from which to take on such a challenge.

This work makes three contributions to embodied Al. First, it offers
a general-purpose architecture for developing behavior-based systems
distributed over networks of PC's. Second, it provides a motor-control
system that simulates several biological features which impact the de-
velopment of motor behavior. Third, it develops a framework for a

3

system which enables a robot to learn new behaviors via interacting
with itself and the outside world. A few basic functional modules are
built into this framework, enough to demonstrate the robot learning
some very simple behaviors taught by a human trainer.

A primary motivation for this project is the notion that it is prac-
tically impossible to build an "intelligent" machine unless it is designed
partly to build itself. This work is a proof-of-concept of such an ap-
proach to integrating multiple perceptual and motor systems into a
complete learning agent.

Thesis Supervisor: Rodney Brooks
Title: Professor of Computer Science and Engineering

4

Acknowledgments

"Cog, you silent smirking bastard. Damn you!"
Phew... it feels good to get that out of my system. I should have

known I was in trouble way back in June of 1993, when Rodney Brooks
both handed me a copy of Lakoff's Women. Fire, and Dangerous Things
and suggested that I start designing framegrabbers for "the new robot".
That was the beginning of ten years of keeping my eyes on the sky above
while slogging around in the mud below.

The truth is, it's been great: I've been working on intriguing prob-
lems while surrounded by smart, fun people and provided with all the
tools I could ask for. But after spending a third of my life in graduate
school, and half of my life at MIT, it is time to wrap up this episode
and try something new.

Many people have helped over the last weeks and months and years
to get me and this document out the door. I could not have completed
this research without them.

Despite a regular lament that I never listen to him, my advisor,
Rodney Brooks, has consistently told me to be true to myself in my
research. That is uncommon advice in this world, and I appreciate it.
Looking back, I wish we'd had more opportunities to argue, especially
in the last few years; I learned something new every time we butted
heads. Maybe we'll find some time for friendly sparring in the future.

Thanks to Leslie Kaelbling and Bruce Blumberg for reading this
dissertation and gently pushing me to get the last little bits out. They
gave me great pointers and hints all along the way. I should have
bugged them more often over the last couple of years.

Jerry Pratt gave me many kinematic insights which contributed to
the work on muscle models. Likewise, I'd like to thank Hugh Herr
for the inspiring discussions of muscle physiology and real-estate in
northern California.

Paul Fitzpatrick and Giorgio Metta kept me company while working
on Cog over the last couple of years. I regret that I was so focused
on getting my own thesis finished that we didn't have a chance to
collaborate on anything more exciting than keeping the robot bolted
together.

I'm awed by the care and patience displayed by Aaron Edsinger and
Jeff Weber during their run-ins with Cog, often at my request a day
before a deadline. Those guys are two top-notch mechanics; I admire
their work.

Brian "Scaz" Scassellati and Matt "Matt" Williamson were my com-

rades in the earlier years working on Cog. Many ideas in this disserta-
tion were born out of discussions and musings with them. The times
we worked together were high-points of the project; I have missed them
since they graduated.

My latest officemates, Bryan "Beep" Adams and Jessica "Hojo"
Howe, have been exceptionally patient with my creeping piles of papers
and books, especially over the last semester. Jessica was a sweetheart
for leaving soda, PB&J's, and party-mix on my desk to make sure I
maintained some modicum of caloric (if not nutritional) intake. Bryan
is a cynic with a top-secret heart of gold. Nothing I can write could do
justice to the good times I've had working with him, and I mean that
with both the utmost sincerity and sarcasm.

I've had some of the best late-night brainstorming rambles over the
years with Charlie Kemp. Charlie also generously provided me with
what turned out to be the last meal I ate before my thesis defense.

Tracy Hammond proofread this dissertation, completely voluntarily.
That saved me from having to actually read this thing myself; I cannot
thank her enough.

I would like to point out that the library copy of this dissertation is
printed on a stock of archival bond paper given to me years ago by Ma a
Matarih. (Yes, Maja, I saved it and finally used it!) Maja was a great
mentor to me during my early years at the lab. The best summer I ever
had at MIT was the summer I worked for her as a UROP on the "Nerd
Herd", back in 1992. That summer turned me into a roboticist. (Ani
that summer would have never happened if Cynthia Breazeal hadn't
hired me in the first place.)

Those of us on the 9th Floor who build stuff wouldn't be half as
productive without the help of Ron Wiken. The man knows where
to find the right tools and he knows how to use them - and, he 13
happy to teach you to do both. Jack Constanza, Leigh Heyman, and
Mark Pearrow have earned my perpetual regard for keeping life running
smoothly at the AI Lab, and for helping me with my goofy sanity-
preserving projects.

A fortune cookie with this fortune

reassured me that I was on the right track with my research.
Carlin Vieri contributed to the completion of this work by pointing

out, in 2001, that my MIT career had touched three decades. Carlin

6

made this same contribution numerous times over the next two years.
My grandmother, Karolina Hajek, my mother, Johanna, and my

sister, Natasha, have been giving me encouragement and support for
years, and years, and years. Three generations of strong women is not
a pillar that can be toppled easily.

I have always thought that I wouldn't have gotten into MIT without
the lessons I learned as a child from my grandfather, Josef Hajek. Those
lessons were just as important for getting out of MIT, too. They are
always important.

Finally, I could not have survived the ordeal of finishing without
the unwavering love of Brooke Cowan. She has been patient and tough
and caring, a steadfast companion in a little lifeboat which made slow
progress on an ever-heaving sea. Brooke proofread this entire document
from cover to cover, and she convinced me to wear pants to my defense.
For months, she has made sure that I slept, that I smiled, and that
I brushed my teeth. Most importantly, every day, Brooke gave me
something to look forward to after this was all over.

And now it is! Thank you!

7

8

Contents

1 Looking Forward 19
1.1 The Platform: Cog 21
1.2 A Philosophy of Interaction 23
1.3 Related W ork 27

1.3.1 Drescher's Schema Mechanism 27
1.3.2 Billard's DRAMA 30
1.3.3 Pierce's Map Learning 31
1.3.4 Metta's Babybot 33
1.3.5 Terence the Terrier 34
1.3.6 Previous Work on Cog (and Cousins) 35

2 sok 37
2.1 Design Goals 37
2.2 System Overview 38
2.3 Life Cycle of a sok-process 40
2.4 Anatomy of a sok-process 41
2.5 Arbitrators and Inports 43
2.6 Simple Type Compiler 43
2.7 Dump and Restore 45

3 meso 47
3.1 Biomechanical Basis for Control 47
3.2 Low-level Motor Control 53
3.3 Skeletal Model 55

3.3.1 Complex Coupling 56
3.3.2 Simple Coupling 59

3.4 M uscular Model 61
3.5 Performance Feedback Mechanisms 63

3.5.1 Joint Pain 63
3.5.2 Muscle Fatigue 63

9

4 Touch and Vision 69
4.1 The Hand and Touch 69
4.2 The Head and Vision 72

4.2.1 Motor System 74

4.2.2 Image Processing 75
4.2.3 Vergence 76
4.2.4 Saliency and Attention 76
4.2.5 Tracking 79
4.2.6 Vision System as a Black Box79

5 pamet M
5.1 A Toy Example: The Finger Robot 82

5.1.1 Learning to Move 8;2
5.1.2 Learning What to Do 4
5.1.3 Learning When to Do It 5

5.2 Names and Data Types 87
5.3 A Menagerie of Modules and Models 88

5.3.1 Movers 89
5.3.2 Controllers 9,
5.3.3 Actors 91
5.3.4 Triggers 94
5.3.5 Transformers 96

5.4 Other Modules and Facilities 98

5.4.1 Age 98
5.4.2 Emotion 99

6 Models and Modellers 103
6.1 Mover Models 103
6.2 Action Models 104
6.3 Trigger Models 109
6.4 Transform Models 118

7 Learning Simple Behaviors 123
7.1 Moving via Movers 123
7.2 The Toy Finger Robot, Realized 129
7.3 "It's a red ball! It's a green tube!" 138

7.4 Reaching Out 147
7.5 The Final Picture 151

10

8 Looking Back, and Forward Again 153
8.1 Creating Structure: What pamet Can and Cannot Do 154
8.2 Unsatisfying Structure: Hacks 156
8.3 New Structure: Future Work 159
8.4 Unintended Structure 163
8.5 Round, Flat Structure: Flapjacks 163

A Details of the Complex Coupling Model 167

B Two Transform Models 173
13.1 Non-parametric: Memory-based Model 173
B.2 Semi-Parametric: Loose Coordinate Transform Model . 174

11

12

List of Figures

1.1 Grand overview of the components of this thesis work.. 20
1.2 Cog, a humanoid robot 22
1.3 Two of Johnson's image schemata 25
1.4 A schema, from Drescher's schema mechanism 28

2.1 A network of sok-pronesses 39
2.2 Typical life-cycle of a sok-process 40
2.3 Typical code flow for a sok-process, using the sok C library. 42

3.1 Overview of meso 48
3.2 Virtual muscles act like antagonistic pairs of real muscles. 49
3.3 Waste of energy due to "lengthening contractions" of

single-joint muscles 51
3.4 Torque feedback loop controlling the torso motors.... 54
3.5 Example of the "complex coupling" skeletal model ... 57
3.6 Description of a vector in two different linked coordinate

frames 58
3.7 Failure of the "complex coupling" skeletal model60
3.8 Example of the "simple coupling" skeletal model60
3.9 Classic Hill model of biological muscle tissue 62
3.10 Joint pain response through the full range of a joint's

motion 64
3.11 Effects of virtual fatigue on a virtual muscle 67

4.1 Cog's right hand, mounted on the arm............... 70
4.2 The four primary gestures of Cog's hand 71
4.3 Response curves of the tactile sensors 72
4.4 Detail image of the FSR sensors installed on the hand.. 73
4.5 Outline of the vision system 73
4.6 Cog's head, viewed from three angles 74

13

4.7 Saliency and attention processing while looking at a walk-
ing person 77

4.8 Saliency and attention processing while looking at the
moving robot arm 78

5.1 A one degree-of-freedom toy robot 82
5.2 Two mover modules for the toy robot 83
5.3 Acquiring an action model and actor for the toy robot. . 85
5.4 Acquiring a trigger model and trigger for the toy robot. S6
5.5 General form of a controller module)l
5.6 Two types of actor modules93
5.7 Two types of trigger modules 95
5.8 General form of a transformer module 97
5.9 The basic emotional system employed b~y pamet..... 100

6.1 Two types of action modellers 105
6.2 An example of position-constant-action data analysis. 1(,6
6.3 Comparison of CDF's to discover active axes 107
6.4 General form of position-trigger modeller. 109
6.5 A sample of a position-trigger training data set111
6.6 Action and reward windows for the example position-

trigger dataset 113
6.7 Comparison of CDF's for the position-trigger example

data . 114
6.8 Possible partitions of a 2-D parameter space by a Gaus-

sian binary classifier 117

7.1 Schematic of the initial state of the system 124ý
7.2 Joint. angles 0 and mover activation A recorded by the

elbow mover modeller. 12C
7.3 Joint velocities 9 and mover activation A for the elbow

mover modeller 127
7.4 Linear fit of 0 versus A by the elbow mover modeller for

elbow and thumb 128
7.5 Recorded raw data while training robot to point its finger. 130
7.6 Comparison of rewarded/unrewarded CDF's while train-

ing robot to point 131
7.7 Prototype positions of the pointing and grasping action

models 132
7.8 Raw data for training the robot to point its finger in

response to touch 133

14

7.9 Reward and action windows for the. pointing-trigger train-
ing session 134

7.10 CDF comparison for two components of the tactile sense
vector 135

7.11 The stimulus model learned for trigger the pointing action. 136
7.12 State of the system after learning to move and point. . . 137
7.13 Prototype postures of three position-constant actions for

the arm 139
7.14 Data acquired in training robot to reach outward in re-

sponse to a red ball 140
7.15 Reward, action windows for training robot to reach in

response to a red ball 141
7.16 Comparison of stimulus vs. background CDF's for red,

green, and blue 142
7.17 Stimulus decision boundary of the red-ball trigger. . . . 143
7.18 Stimulus decision boundary of the green-tube trigger. . 144
7.19 Data acquired by a trigger modeller while training a dif-

ferent action/trigger. 145
7.20 Learned arm postures (and any other actions) can be

modified over time 146
7.21 Training performance degradation of transform models,

RMS-error 149
7.22 Ability of transform models to lock on to signal in the

face of noisy data 150
7.23 Schematic of the final state of the system 152

A. 1 Description of a vector in two different linked coordinate
frames. 168

A.2 General parameterization of linked coordinate frames. . 169

15

16

List of Tables

1.1 Johnson's twenty-seven "most important" image schemata. 26

2.1 Syntax of the sok type description language 44

5.1 Classes of modules implemented in pamet 89

7.1 The complete set of mover modules which connect pamet
to meso 125

17

18

Chapter 1

Looking Forward

This thesis work began with some grand goals in mind. I'm sure this is
typical of the beginnings of many thesis projects, but it is all the more
umremarkable considering that this work is part of the Cog Project. The
original visions behind the Cog Project were to build a "robot baby",
which could interact with people and objects, imitate the motions of
its teachers, and even communicate with hand gestures and winks and
nods. Cog was to slowly develop more and more advanced faculties
over time, via both learning and the steady addition of more complex
code and hardware.

My own pet goal was to end up with a robot which I could success-
fully teach to fry me a batch of pancakes. I was happy to settle for
starting with a box of Just Add Water! mix and a rectangular electric
griddle. (And a spatula bolted to the end of one of Cog's paddles.)
There is no sarcasm intended here. This is a task which is quite easily
performed by children. One could also quite easily design a machine
specialized to perform precisely that task, using technology from even
fifty years ago. However, to build a machine which learns to perform
that task, using tools made for humans, is -- still - no easy feat.

I would venture to say that none of the grandest goals of the Cog
Project came to fruition, mine included. Cog is not yet able to learn to
do a real, humanly-simple task. However, I was able to achieve some
of my more humble and specific goals:

* Create a learning system in which actions and states are learned
or learnable entities, not hard-coded primitives.

* Use a real robot, physically interacting with real people.

* Teach the robot to do something.

19

sok [(C. 21

(r tprocesses, c o d a s g

i s wi tae tion a
/ ~[Ch.} 51

rmm(t pamet (t ,

&/ 7) vision s o s c nf t t
o her s m models, modellers,

SDesign a system which rs, capabolerosogtemotnuu pl

atin btendn. actions, triggersn .
Thig, Ithse gfoa I tactile result-
ingsysthem control ed onhCog.

•. I mso I Itouch sense -/"'1 ~meso [Chý 31

Figure 1.1: Grand overview of the components of this thesis work. sok
(Chapter 2) is the process control and message-passing glue with which
everything else is writtend meso (Chapter 3) is a biologicasy-motivated
motor control layer implementing virtual muscles. meso is groundrd
in the physical hardware, as are the vision system, tactile sense, and
rudimentarky emotional system (Chapters 4 & 5). pamet (Chapters 5, 6,
& 7) is the "smarts" of the system, creating models of the interactio-Ls
of the other subsystems in order to learn simple behaviors.

9 De~sign a system which is capable of long-term, continuous oper-

ation, both tended and untended.

This dissertation de2cribes these goals and constraints, and the result-
ing system implemented on Cog.

A grand overview of the system is given in Figure 1.1. The wor,(
comprise~s three significant components. The first is sok (Chapter 2),
an interprocess communication (IPC) and process control architecture.
sok is specifically adapted to the QNX real-time operating system, bu;-
could be. ported to other POSIX-based OS's. It is a general-purpose
tool useful for anyone building a behavior-base system distributed
over a network of procesors. The second piec•e is meso (Chapter 3), aL
biologically-inspired motor control system which incorporates the no-.
tion of "virtual muscles". Although tuned for Cog, it provides a quitx,(

20

general system for controlling a robot composed of torque-controlled
actuators. The third and final piece, built upon the first two, is pamet
(Chapters 5-7). pamet is a framework for designing an intelligent robot
which can learn by self-exploration and by interacting with human
teachers. It is by no means a complete system; it is missing several
important elements, but the structure necessary for adding those ele-
ments is in place. As it stands, it is capable of being taught a simple
class of actions by a human teacher and learning to perform those ac-
tions in response to a simple class of stimuli. Learning systems always
live at the mercy of the sensory and motor systems they are built upon,
and the sensory systems used here are quite basic. Chapter 7 discusses
what Cog and pamet can currently do and explores what elements they
would require to do more.

1.1 The Platform: Cog

As alluded to already, the robot platform used in this project is Cog
(Figure 1.2). This is an anthropomorphic robot, with a design which
captures significant features of the human body from the waist up.
Cog's hips are a large, two degree-of-freedom (dof) gimble joint; the
torso has a third dof in the rotation of the shoulder yoke. Cog has two
arms, each with six degrees of freedom - three in the shoulder, one in
the elbow, and two in the wrist. (The human wrist has three.) The
left arm ends in a simple paddle, but the right arm is outfitted with
a 2-dof hand with tactile sensors. Atop the shoulder yoke is a 7-dof
head, which includes two eyes consisting of two video cameras apiece.
The actuators used in the torso and arms are described in Chapter 3,
and the hand and head are described in greater detail in Chapter 4.
At various times, microphones have been mounted around the head to
provide auditory input, but none are used in this project. The entire
robot is bolted to a sturdy steel base so that it stands at average human
eye-level. Cog is not a particularly "mobile" robot; the base stays where
it is.

All the processing for Cog is performed off-board, by racks of 28 x86
architecture processors running the QNX4 operating system. These
nodes are networked together via 100baseT 100Mb/s ethernet. All
nodes are connected to one another via a locally-switched backbone
hub. Many nodes with large data throughput requirements (such as
those handling video data) are also connected to each other directly
via full-duplex point-to-point 100baseT connections. The processor
speeds range from 200 to 800 MHz, and each node hosts 128 to 512

21

Figure 1.2: Cog is a humanoid robotics platform. It has a total of 24
degrees of freedom: 3 in the torso, 6 in each arm, 2 in the hand, arud
7 in the head. The torso and arms feature torque-controlled actuators;
the head/eyes are under conventional position control. Four cameras
provide stereoscopic vision at two different resolutions and fields-of-
view. The hand is equipped with tactile sensors. All processing and
control is done off-board, on an expandable network of twenty-eight
off-the-shelf x86 processors.

22

MB of RAM. About half of the nodes are dedicated to specific sensory
or motor I/O tasks.

1.2 A Philosophy of Interaction

This project is motivated by the idea that perception i's meaningless
without action. The semantic content of a sensory experience is grounded
in an organism's ability to affect its environment and in its need to de-
cide what effect to produce. The meaning of what we see and hear and
feel comes from what we can do about it.

A disembodied perceptual system cannot assign much intrinsic value
to the information it processes. When a face detection algorithm draws
bounding boxes around faces in a scene displayed on a computer screen,
the meaning of those boxes typically arises from their observation by a
human, to whom a "face" has meaning because it is attached to a large
repertoire of social cues, interactions, desires, and memories.

The layers upon layers of interwoven concepts constituting intel-
ligence are rooted in primitives that correspond to simple, direct in-
teractions between motor systems and sensory systems, coupled either
internally or through the environment. It is the interactions between
these systems, and the patterns discovered among these interactions,
which are the basis of thought.

Experience and Metaphor

In Metaphors We Live By [30], George Lakoff and Mark Johnson ex-
plore a philosophy of meaning and understanding which revolves around
the pervasive use of metaphor in everyday life. Metaphors, they claim,
are not simply poetic linguistic constructs:

The most important claim we have made so far is that
metaphor is not just a matter of language, that is, of mere
words. We shall argue that, on the contrary, human thought
processes are largely metaphorical. [p. 6]

Linguistic metaphors are expressions which describe one entity or con-
cept as being another, drawing on structural parallels between the two:
e.g. "Time is Money". Time and money are not literally one and the
same, however we treat the abstract Time in many of the same ways
we treat the more physical Money; they are subject to similar pro-
cesses in our culture. We quantify Time, treating it as a comnnodity,
which is valuable and often scarce. Time can be spent, wasted, given,

23

received - even invested. In a literal sense, we can do none of these
things with ephemeral Time. Nonetheless, this metaphor permeates
our daily interaction with Time; we treat Time as an entity capable of
sudc interactions.

Lakoff and Johnson reject the objectivist philosophy that meaning
is wholly reducible to propositional forms which are independent of tCie
agent doing the understanding. Thought, at all levels, is structured by
the interrelations of a great number of metaphors (if enumerable at aJl)
derived from cultural, physical, and emotional experience.

The "Time is Money" metaphor is cultural and largely tied to post-
Industrial Revolution western culture. In the later The Body in the
Mind [27], Johnson focuses on metaphorical structures which are the
result of the basic human physical form - and are thus (more or less)
universally experienced by all humans. These simple structures, which
he terms image schemata, become the basic elements out of which the
more abstract metaphors eventually form. As he describes them:

A schema isi a recurrent pattern, shape, and regularity in, or
of, these ongoing ordering activities. These patterns emerge
as meaningful structures for us chiefly at the level of our
bodily movements through space, our manipulation of ob-
jects, and our perceptual interactions.... [p. 29]

... [schemata] are not just templates for conceptualizing
past experiences; some schemata are plans of a sort for in-
teracting with objects and persons.... [p. 20]

Examples axe the CONTAINER and related IN-OUT schemata (Figure 1.3).
These schemata are manifest in many physical acts, such as "Lou got
out of the car" or "Kate squeezed out some toothpaste." However, they
also apply to non-physical acts, such as "Donald left out some impor-
tant facts" or "June got out of doing the dishes."

Johlson goes so far as to explain formal logic itself in terms of the
CONTAINER schema [27, p. 38]. The requirement that a proposition P
be either true or false is the analog of the requirement that an object
is either inside a container or outside the container. Transitivity is
explained in the same way as a marble and a sack: if a marble is
contained in a red sack, and the red sack is contained in a blue sack,
then the marble is also contained in the blue sack. Negation, too: just
as P is related to the objects contained in some box, -'P is equivalent
to the objects outside of the box. In Johnson's view, abstract logical
reasoning does not exist in some absolute objective sense; rather, it is
derived from physical experience with containment:

24

0+

CONTAINER IN-OUT

Figure 1.3: Two of Johnson's image schemata. The CONTAINER schema
captures the various notions of containment, of something held with
something else, of something comprising a part of something else. The
IN-OUT schema captures the action of something leaving or entering a
container. These schemata apply to physical events ("George put his
toys in the box.") as well as abstract events ("Emil went out of his
mind.").

Since we are animals, it is only natural that our inferential
patterns would emerge from our activities at the embodied
level. [p.40]

Johnson produces a "highly-selective" list of 27 schemata (Table 1.1).
Some (NEAR-FAR) are topological in nature, describing static relation-
ships. Many (BLOCKAGE, COUNTERFORCE) are force gestalts, describ-
ing dynamic interactions. While not an exhaustive list, these schemata
are pervasive in everyday understanding of the world. These schemata
are not just tied to physical interactions, either; they also cross-correlated
with recurrent emotional patterns and physiological patterns.

Philosophers and Auto Mechanics

The Cog Project was born out of these ideas [8, 12]. If even our most
abstract thoughts are a product of metaphors and schemata which
are themselves grounded in our bodies' physical interaction with the
world, then human intelligence is inseparable from the human condi-
tion. Therefore, if we want to construct a machine with a human-like
mind, that machine must also have a hunan-like body, so that it too
can participate in human-like experiences.

The entire philosophical debate between objectivism, cognitivism,
phenomenology, experientialism, etc., is just that, debatable. Maybe

25

CONTAINER BALANCE COMPULSION

BLOCKAGE COUNTERFORCE RESTRAINT REMOVAL

ENABLEMENT ATTRACTION MASS-COUNT

PATH LINK CENTER-PERIPHERY

CYCLE NEAR-FAR SCALE

PART-WHOLE MERGING SPLITTING

FULL-EMPTY MATCHING SUPERIMPOSITION

ITERATION CONTACT PROCESS

SURFACE OBJECT COLLECTION

Table 1.1: The twenty-seven "most, important" image schemata list -d
by Johnson [27, p. 1261.

reality can be reduced to a set of symbolic manipulations, maybe not.
As roboticists however, we must eventually get our feet back on the
ground and go and actually build something. The notion of embod-
ied intelligence suggests an approach to the task worthy of exploratioa.
We should build robots capable of physically interacting with the word
(including people) in basic human-like ways. We should try to design
these robots such that they can learn simple image-schema-like rela-
tionships via such interactions. We should work on mechanisms for
connecting such relationships together, for creating more abstract lay-
ers woven from the same patterns. Perhaps we will then end up with
not only a machine capable of some abstract thought, but a machine
which shares enough experience with its creators that its thoughts axe
compatible with ours and communicable to us.

Even if philosophers eventually conclude that a complete shared ex-
perience is not a formal requirement for a human-like thinking machine,
the approach has practical merit. For example, eyes are certainly no
prerequisite for human thought - a congenitally blind person can b•
just as brilliant as a person with 20/20 vision. But, perhaps mecha-
nisms which co-evolved with our sense of sight contribute to the greater
mental process; if we force ourselves to solve problems in implementing
human visual behavior, we inight happen to discover those mechanismn
as well.

This brings up a host of other questions: Have our brains evolved to
accommodate any metaphors, or a particular limited set? What type;
of models underlie such metaphors, and which should we build? How
much are the metaphors we develop an artifact of whatever brain/body
combination we happen to have'? (Visually, with our coordinated stereo-
scopic eyes and foveated retinas, we only focus on one thing at a time.

26

What if we were wired-up like chameleons, with eyes which could be
controlled completely independently? Would we have expressions like
"I can only focus on two things at a time, you know!")

1.3 Related Work

Many projects have taken these philosophies to heart to some de-
gree. The entire subfield of "embodied Al", in contrast to the symbol-
crunching "Good Old Fashioned Al", is driven onward by replacing
cognitivism with experientialism. This section describes a represen-
tative sample of projects which explore some aspect of knowledge a.s
interaction. Each of these projects shaped my own work in some way
because they contained ideas which either appealed to me or unnerved
me and thus provided vectors along which to push my research.

1.3.1 Drescher's Schema Mechanism

Drescher [161 presents a learning system in which a simulated "robot"
learns progressively more abstract relations by exploring and interact-
ing with objects in its grid-world. This system is presented as an imple-
mentation of the earliest stages of Piaget's model of human cognitive
development [40], namely the sensorimotor stage, in which an agent
discovers the basic elements of how it interacts with the world.

This schema mechanism comprises three basic entities: items, ac-
tions, and schemas (Figure 1.4). Items are binary state variables, which
can be on or off as well as unknouw. Actions correspond to a monolithic
operation. Schemas are predictive or descriptive rules which specify the
resulting state of a set of items after executing a particular action, given
a particular context (specified by the states of another set of items).
The system is created with a number of primitive items and actions,
which are derived from the basic sensory and motor facilities built into
the simulation. The goal of the system is to develop schemas which
describe the relations between the items and actions and to develop a
hierarchy of new items and actions based on the schemas.

Every action is automatically assigned a blank schema, with no
items in its context or its result. In Drescher's notation, such a schema
for action Q is written "-/Q/-" . Whenever the action is executed,
the system updates statistics on the before and after states. Eventually,
if the action seems to affect certain state items, a new schema will be
"spun-off" which includes those items in the result slot, e.g. "-/Q/-ab".
This schema predicts that executing Q always leads to a state in which

27

ab-c xy

context action result

A -

B
Figure 1.4: Drescher's schema mechanism [16]: A scheuia (A) is a rulk
which specifies the resulting state of some binary items ("x" and "iy')
if an action ("Q") is performed while the system's initial state satisfiei
some context ("a", "b", and "not c"). A schema maintains statistici
on all other ("extended") context and result states as well, which are
used to decide to "spin-off" new schemata with more specific contexi;
or results. Composite actions are instantiated as chains of schemas (B)
with compatible result and context clauses.

28

a is on and b is off. Such a schema will be further refined if a particular
context makes it more reliable. This would yield, for example, "de-
f/Qiab", a schema which predicts that, when d and e are on and f
is off, executing Q leads to a being on and b being off.

Composite actions can be created, which refer to chains of schemas
in which the result of the first satisfies the context of the next., and so
on. Executing a composite action amounts to executing each subaction
in sequence. Synthetic items can also be created. Instead of being tied
to some state in the world simulation, each synthetic item is tied to a
base schema. The item is a statistical construct which represents the
conditions that make its basic schema reliable.

These two methods for abstraction give the schema system a way
to represent concepts beyond raw sensor and motor activity. Drescher
gives the example that a schema that says "moving to (X, Y) results
in a touch sensation" effectively defines the item of state "tactile object
at position (X, Y)". For that schema to be reliable, that bit of knowl-
edge must be true - so in the schema system, that schema is that
knowledge.

Limitations The concepts espoused in Drescher's work resonate
strongly with the founding goals of the Cog Project. The schema mech-
anism is, unfortunately, of little practical value in the context of a real-
world robot. However, my own work was greatly influenced by the
desire to address its unrealistic assumptions.

The schema system is essentially a symbolic AI engine. It operates
in a toy grid-world with a small number of binary features. The "robot"
has 10 possible primitive actions: moving its "hand" in 4 directions,
shifting its "glance" in 4 directions, and opening or closing the hand.
The primitive state items correspond to bits for each possible hand
location (in a 3x3 region), each possible glance position, contact of
"objects" with the "body", each visual location occupied by an object,
etc. -- a total of 141 bits. Sensing and actuation are perfect; there is
no noise in any of those bits. Actions are completely serialized, carried
out one-at-a-time and never overlapping or simultaneous. Furthermore,
except for occasional random movement of the two objects in this world,
the world-state is completely deterministic, governed by a small set of
logical rules. The lack of a realistic notion of time and the lack of
any material physics in the grid-world reduces the system to an almost
purely symbolic exercise.

This grid world is very unlike the world inhabited by you or me or
Cog. Cog's sensors mid actuators are closer to continuous than discrete;
they are certainly not binary. They are also (exceptionally) noisy. Cog

29

has mass and inertia and the dynamics that accompany them. And
Cog interacts with very unpredictable people.

In my work, I have made a concerted effort to avoid any grid-
world-like assumptions. The lowest-level primitive actions (roughly, the
movers described in Section 5.3.1) are velocity-based and controlled by
a continuous parameter (well, a float). Sensors provide time-series of
vectors of real numbers, not binary states. Via external reward, the
system distills discrete contexts representing regions of the parameter
spaces of the sensors; the states of these contexts are represented as
probabilities. Real-time is ever present in the system both explicitly
and implicitly.

1.3.2 Billard's DRAMA

Billard's DRAMA (Dynamical Recurrent Associative Memory Arcl i-
tecture) also bills itself as a complete bottom-up learning system. It
[3, p.351

tries to develop a single control architecture which enables
a robot to learn and act independently of a specific task,
environment or robot used for the implementation.

The core of the system is a recurrent neural network which learns re-
lations between sensor states and motor activity. These relations can
include time delays. Thus, the system can learn a bit more about the
dynamicns of the world than Drescher's schema mechanism.

DRAMA was implemented on niobile robots, both in simulatioa
and the real world. (Further experiments were also conducted with
a "doll robot" [2].) Two types of experiments were performed. In
the first, a hard-wired "teacher" robot would trundle about a world
populated with colored boxes (and, in simulation, sloped hills). As it
encountered different landmarks, it would emit a preprogrammed radio
signal describing the landmark. A "learner" robot would follow the
teacher, and learn the radio names for landmarks (as it experienced
them via its own sensors). In the second set of experiments, the learner
would follow the teacher through a constrained twisting corridor and
learn the time-series of sensory and motor perceptions as it navigated
the maze.

The results of experiments were evaluated by inspecting the connec-
tions learned by the DRAMA network and verifying that the expected
associations were made and that the knowledge was "in there". It is
not clear, however, how that knowledge could later be put to use by

30

the robot. (Perhaps, once the trained learner robot were let loose, it
would emit the right radio signals at the right landmarks?)

The fact that this system was implemented on real robots is signifi-
cant, because it demonstrates that DRAMA could function with noisy
sensing and actuation. The sensor and motor encodings are still overly
simple, however. The robots have two motors each, controlled by a
total of six bits (three per motor, corresponding to on/off, direction,
and full/half speed settings). Each robot has five or six sensors each,
totalling 26 bits of state. However, the encodings are unary. For single-
bit sensors, like bump detectors, they are simply on/off. For multi-bit
sensors, such as the 8-bit compass, each possible state is represented
by a different bit. (The compass can register one of eight directions;
only one bit is active at any given moment.) Overall, this situation is
not very different from the discrete on/off items of Drescher's schema
mechanism.

Although DRAMA can learn the time delays between sensor and
motor bit-flips, it has no mechanism for abstraction. DRAMA cannot
condense patterns of activation into new bits of state. The structure of
the network is fixed from start to end.

1.3.3 Pierce's Map Learning

Pierce [41] created a system in which a simulated mobile robot learns
the physical relationship of its sensors and then learns control laws
which relate the sensors to its actuators. The simulated robot is simply
a two-dimensional point with an orientation, which moves around in a
variety of walled environments with immovable obstacles (e.g. more
walls). The agent is equipped with a ring of 24 distance sensors, a
4-bit/direction compass, and a measurement of "battery voltage". It
moves via two velocity-controlled actuators in a differential-drive "tank-
style" configuration.

Pierce's system discovers its abilities in four stages:

1. Model the sensory apparatus.

2. Model the motor apparatus.

3. Generate a set of "local state variables".

4. Derive control laws using those variables.

In the first stage, the robot moves around its environment randomly.
The sensors are exercised as the robot approaches and leaves the vicin-
ity of walls. The sensors' receptive fields overlap, and thus the data

31

sampled by neighboring sensors is highly correlated. The system uses
that correlation to group sensors together and derive their physical lay-
out. In the second stage, the robot continues to move around randomly.
The distance sensors are constantly measuring the distances to any ()b-
stacle in the line of sight - and thus they measure the robot's relative
velocity with respect to the obstacles. Since the distance sensors rxe
in a known configuration, these values give rise to velocity fields, and
applying principle-components analysis to these fields yields a concise
description of the principle ways in which the robot can move. Tue
third stage amnounts to applying a variety of filters to the sensor values
to find combinations which result in constraints on the motion of the
robot. The filtered values are used as new state variables and, finally,
the constraints they impose are turned into control laws for the robct.

This system is intriguing because it uses regularities in the robot's
interaction with the environment to distill the simple physics of the
robot from a complex array of sensors. And, unlike the previous two
projects, it broaches the confines of binary state and action, using real-
valued sensors and actuators. Furthermore, it does incorporate a notion
of abstraction, in the derivation of the "local state variables". However,
it depends heavily on many assumptions which are not valid for a hu-
manoid robot.

Pierce makes the claim that his system transcends its implementE-
tion [41, p. 3]:

The learning methods are domain independent in that they
are not based on a particular set of sensors or effectors and
do not make assump)tions about the structure or even the
dimensionality of the robot's environment.

Actually, the nmethods are completely dependent on the linearity con-
straints imposed by the simulation. His system would not fare so well
discovering the kinematics of a 6-dof arm, in which the relation be-
tween joint space and cartesian space is not translation invariant. The
methods also depend on locality and continuity constraints applied to
the sensors. They work with 24 distance sensors which exhibit a lot
of redundancy and correlation; the methods would not work so well if
there were only four sensors. Furthermore, the sensors and actuators
in Pierce's simulation are completely free of noise. It is not clear how
robust the system is in the face of imperfect information.

32

1.3.4 Metta's Babybot

Metta's graduate work [36] revolves around "Babybot", a humanoid
robot consisting of a 5-dof stereoscopic head and a 6-dof torque-controlled
arm. The robot follows a developmental progression tied extensively to
results in developmental psychology and cognitive science:

1. The robot begins with no motor coordination at all, making a
mixture of random eye movements and arm motions.

2. Using visual feedback, it learns to saccade (a one-shot eye move-
ment to focus on a visual stimulus) progressively more accurately
as it practices. The head moves very rarely.

3. As saccade performance improves, the head moves more frequently,
and the robot learns to coordinate head and eye movement. The
head is moved to keep the eyes centered "within their sockets".

4. As visual target tracking improves, now that the head can be
controlled, the robot learns to coordinate movement of its arm,
as a visual target.

5. Finally, the robot will look at moving targets and reach out its
arm to touch them.

Each stage in the seusorimotor pipeline in this systern depends on the
stage before, so a succeeding stage cannot begin learning until the
preceding stage has gained some competence. However, the noisier,
lower-resolution data provided by the preceding stage early in its own
development actually helps the succeeding stage in learning.

Metta's project culminates in essentially the same demo goal as my
work: to have the robot reach out and touch objects. We have very dif-
ferent approaches, though. Babybot follows a preset, preprogrammed
developmental progression of learning motor control tasks. Its brain
is prewired with all the functions and look-up tables it will ever need,
only they are missing the correct parameters. These parameters are
acquired by hard-coded learning algorithms which are waiting to learn
particular models as soon as the training data is good enough. In my
work, on the other hand, I have tried to avoid as many such assump-
tions about what needs to happen as possible. The goal of my system
is to try to discover where certain models can be learned, and which
models are worth learning.

Both approaches have their places. The tabula rasa makes for a
cruel classroom; no learning is successful without being bootstrapped

33

by some initial structure. On the other hand, in a dynamic, complex
world, there is only so much scaffolding that one can build - at some
point, a learning agent must be provided with pipes and planks E.nd
allowed to continue the construction on its own.

1.3.5 Terence the Terrier

Blumberg et al [5] have created an animated dog, Terence (third in a
distinguished pedigree, following Duncan and Sydney [521). This crea-
ture, living in a computer graphics world, can be trained to perform
tricks by a human trainer who interacts with it using two rendeied
hands (controlled via joystick) and vocal commands (via microphone).
The trainer can reward the dog with a CG treat.. Using a clicker train-
ing technique, the trainer clicks (makes a sharp sound with a mech n-
ical clicker) and rewards the dog when it (randomly) performs the de-
sired action. The click tells the dog when the action is complete, and
the dog soon associates the action with receiving reward. The dog
starts performing the action more frequently, and then the trainer re-
wards the dog only when the action is performed in conjunction with
a verbal utterance. The dog then learns to perform the action on cue.
This process is, in a reinforcement-learning-like fashion, a matter of
linking states to actions. However, this dog's states and actions are not
necessarily discrete and not completely enumerated at the outset.

Terence's states take the form of binary percepts, composed of in-
dividual model-based recognizers organized in a hierarchical fashion.
As new raw sensory data arrives, it is passed down the percept tree to
more and more specific recognizers, each dealing with a more specific
subset of the data. These models are added to the tree dynamically,
in response to input patterns that are reliably coincident with reward.
Thus, only the regions of the sensory state space which are conducihe
to receiving reward are noted.

Terence's initial action space consists of a collection of short, hand-
picked animation sequences which constitute its behavioral and m-,
tor Primitives. These actions are represented as labelled trajectori,ýs
through the pose space of the dog, which is itself a set of snapshots of
the motor state (joint angles and velocities). The poses are organized
in a directed graph which indicates preferential paths for transitionitg
from one pose to another. Some of the primitive actions are parameter-
ized (the "shake-paw" amplitude is mentioned). It is further possible to
create new actions (trajectories through the pose space). The percept
tree includes recordings of short sequences of motion; if such a sequence
is reliably rewarded, it is added to the action list. Note, however, that

34

all actions, even novel ones, are paths through the nodes of the same
static pose graph.

1.3.6 Previous Work on Cog (and Cousins)

Over the years, Cog has spawned a lot of work on many elements of mo-
tor control, social interaction, and cognitive systems. Matt Williamson
investigated control of the arms with kinematically-coupled non-linear
oscillators [481. Brian Scassellati explored a theory of body and mind,
resulting in a system which could distinguish animate from inanimate
objects and which could imitate simple gestures [45]. Cynthia Breazeal,
working on Cog's close relation Kismet, developed a robot with a wide
range of convincing facial and auditory gestures and responses [7]. Al-
though it was only a head, Kismet was quite successful at "engaging"
and shaping the attention of people around it. Bryan Adams devel-
oped a biochemical model for Cog's motor system [1]. I worked on
using motor knowledge to enhance sensory performance [33, 321.

Until Paul Fitzpatrick's contemporaneous work on understanding
objects by poking them [18], these projects all sorely lacked a significant
feature: learning of any long-term behaviors. These projects all had
adaptive components, where parameters were adjusted or calibrated as
the robots ran, but the maps or functions learned there were hard-wired
into the system. Scassellati's imitation system could observe, encode,
and mimic the trajectory of an object, but that knowledge was tran-
sient. The last trajectory would be thrown away as soon as a new one
was observed. Furthermore, that was the system's sole behavior, to
imitate gestures; there were no mechanisms for deciding to do some-
thing else. Kismet could hold and direct a person's attention, could
express delight and frustration in response to the moment - but all of
its behavior was a transient dance of hard-coded primitives, respond-
ing to that moment. It attended to people and objects but didn't learn
anything about them.

That's where this work comes in: creating a framework which en-
ables Cog to actually learn to do new things, to retain that knowledge,
and to manipulate that knowledge. Unfortunately, this work suffers
from a converse problem: the components built for it so far, and thus
the knowledge it can acquire, are few and simple. In a perfect world
(i.e., if the robot were not quickly sliding into obsolescence) I would
revisit all the previous projects and try to adapt their systems to this
new framework. In doing so, the framework would certainly evolve.
The dream is to reach a point where enough of the right common rep-
resentations and interfaces are developed that it becomes trivial to drop

35

in new models which shuffle around and find their place and funct ion
among the old ones.

That, however, is for later. Now it is time to discuss what has
actually been done.

36

Chapter 2

sok

sok is an API for designing behavior-based control systems, and it is the
foundation upon which the software in this thesis is built. sok shares
many of the same goals as Brooks' original Behavior Language (BL)
[11], and it is the evolutionary successor to InterProcess Socks (IPS)
[10] and MARS [9], which had been used in earlier work on Cog. Unlike
its Lisp-based ancestors, sok is implemented as a C library and API,
and it allows computation to be distributed throughout a multiproces-
sor network running the QNX operating system (i.e. Cog's current,
third, and final computing environment).1 sok provides a real-time,
dynamic environment for data-driven programming, which is essential
to realizing the goals of this project.

This chapter describes the essential features and structure of pro-
gramming with sok. A complete description can be found in the sok
User Manual [31].

2.1 Design Goals

sok was designed with a number of specific goals in mind. First and
foremost, the purpose of sok is to enable coding which distributes com-
putation over many processors. Much of the computation on Cog is
I/O bound (i.e. simple computations applied to large continuous flows
of data), so sok has to be lightweight and to make efficient use of the
network. QNX provides an optimized network-transparent message-
passing system, and sok uses this as its communication medium.

Isok is built on top of the message-passing features of the QNX operating sys-
tem. However, it could probably be ported to another OS given the appropriate
communication layers.

37

sok supports dynamic networks of processes. Processes, and con-
nections between them, can be added to and removed from the running
system. This is in contrast to Behavior Language (or the C40 network
in Cog's second brain): processes and their connections were specified
statically at compile time, and there was no runtime process control.
sok builds on top of QNX's POSIX process control, so processes can be
started, suspended, resumed, and killed from the QNX shell.

The network of processes maintained by sok is tangible. A program
can traverse the network and explore how processes are connected to-
gether. This allows for code which programmatically spawns new pro-
cesses and attaches them to appropriate places in the network. sok in-
cludes a simple typing system which allows programs to identify what
type of data is being passed via various ports.

sok's process network is also saveable and restoreable. Cog's soft-
ware has many adaptive and learning modules; the goal of the research
is to create a system which grows and develops as it runs. It is crucial
that sok be able to save and restore the complete state of the system,
so that the system can continue to develop between power-cycles, and
to aid off-line analysis. Since processes can be created and hooked into
the network on the fly, this state consists of the connections between
processes as well as their individual runtime states.

Lastly, sok is robust in the face of temporary failures in the system.
sok allows dead or hung modules to be restarted without losing con-
nection state. If a processing node fails, the processes which ran on it
are lost (until restarted), but the rest of the system marches onward
without deadlocking.

2.2 System Overview

The sok world consists of three parts: individual processes compiled
with the sok C library, a locator daemon, and some shell utilities.

The fundamental unit in the sok paradigm is a sok-process (Fig-
ure 2.1), which can be considered a typical POSIX-like process exe-
cuting in its own memory space, augmented with some built-in com-
munication and control features. A sok-process exchanges data with
peer sok-processes via inports and outports. Typically, a sok-process
responds to received data on its inports, performs some calculation,
and then sends messages with the results via its outports. The intent
is that each sok-process encapsulate some behavioral primitive such as
"visual motion detection" or "arm motor interface". Such primitives are
coded independently of each other. Yet, by connecting ports, they are

38

rutm state

Figure 2.1: A network of sok-processes, connected via inports and out-
ports. The inset highlights the structure of a sok-process with a nunber
of ports. Multiple incoming and outgoing connections are allowed. The
body code runs asynchronous to and independent of the message pass-
ing (both in time and process space).

glued together to form a complete control system.
The connections of a sok-process are independent of the process ex-

ecution; messages are sent and received asynchronously. Furthermore,
a sok-process can be suspended, or even killed and restarted, without
affecting the state of its connections. This is useful for graceful crash
recovery, preserving system state, and testing by "lesioning" the system.

Each sok-process has a unique name in a hierarchical namespace
managed by the locator daemon, soklocate. This program runs on one
node in the network and maintains a record of the names, process id's,
and port lists of all registered sok-processes. The locator is consulted
when a new sok-process is created, or when process and port names are
referenced to create connections. Once sok-processes are running and
connected, however, they will continue to run even if the locator goes
down. When the locator is restarted, sok-processes will automatically
reconnect to it, allowing it to re-establish the registry of sok space.

External to all of this is the sok utility program, which can be
used in the shell (and in shell scripts) to connect and disconnect ports,
start and stop processes, examine process status, etc. sok provides
a command-line interface to the more useful public parts of the sok

39

programvisible as sok procew

Prologue Reselyw Loop tra
- process command-Iine -. - receive data messages a1
-declare pot nswer port qer~e

- initalize stale

SLo Epgue
- nstensate ports L -send data messaes - deregister process
- register id, locator - answer port qerie - dereg• ter ports
i - tor receive thread - spawn proess -loop back to Prologue

I B.....od

eve-Int~tt~,J

Figure 2.2: The typical life-cycle of a sok-process: it begins as a regular
process, and does not become visible in sok space until it registers with
the sok locator daemon. At that point, the original process forks into
two threads to handle sending and receiving port, messages. When the
body code is spawned, the sender thread forks an independent child
process. When the sok-process removes itself from sok space, it notifies
the locator and then kills any extra threads and children.

messaging library. The final utility provided by sok is the simple type
compiler, sokstc, which turns port type descriptions into code for cre-
ating typed ports.

2.3 Life Cycle of a sok-process

Figure 2.2 depicts the life cycle of a typical sok-process. It begins,
like any other POSIX process, with the execution of a program. The
program processes command-line arguments, and perhaps reads a con-
figuration file. It is not actually a sok-process, however, until it registers
with the locator daemon.

Upon registering with the locator daemon, the process declares its
unique sok name and the names and types of all of its ports. It also
forks into two threads: one for sending messages, and one for receiving
them.2 Once registration is complete, the process is fully visible in sok
space. Its ports can be connected to ports on other processes, and it is
ready to receive and send messages.

2
This is necessary to avoid a deadlock condition in QNX which may occur when

a cycle of processes attempt to send messages to each other.

40

The newborn sok-process will not actually do anything with mes-
sages, though, until the body code is "spawned". This causes the origi-
nal process to fork again and run the user's code in a separate process,
which protects the message handling code from segmentation faults and
other damage. This new body process is the actual "meat" of the sok-
process and performs the user's computation, acting on data received
from inports (or hardware) and sending data via outports. The body
process can be killed and respawned; this does not affect the ports or
their connections, or the status of the process in sok space.

At this point, the sok-process is happily doing its job. It can then
be told to "exit", which causes it to kill the receiver and body threads,
disconnect all ports, deregister and disappear from sok space, and then,
usually, exit. But, tie process could be written to reconfigure itself,
reregister with the locator, and begin the cycle anew.

2.4 Anatomy of a sok-process

The anatomy of a typical sok-process (Figure 2.3) reflects its life cycle.
The first part, the prologue, is where the sok configuration is set up.
SokParseOpt ions) is used to parse standard sok-related command-
line options. All input and output ports are declared with Sokftegis-
terInport () and SokRegisterfutport 0. (The ports are not actually
created until the sok-process is registered.) SokParamkllocate() can
be used to create a block of memory which is preserved between invo-
cations of the body code.

The process becomes a true sok-process once SokInit C) is called.
This function allocates memory for port data buffers, forks off the han-
dler threads, and registers the process with the locator daemon.

SokInit 0 never actually returns to the original process until the
sok-process is told to exit. However, whenever the sok-process is told
to spawn the body code, SokInit () will fork and return SOK.OK to
the child process. Thus, the code following a "successful" invocation of
SokInit C) is considered the body block.

The body block is usually an event-driven loop. At the beginning of
a cycle, it waits for activity on a sok port (new data, new connection)
or the expiration of a timer. Then, it may lock inports and read data,
perform calculations, and finally send data via outports. If the body
block ever exits, the body process dies, but may be respawned again.

Any code that executes after SokInit C) returns a non-SOK-0K con-
dition is considered part of the epilogue. Most processes will simply
exit at this point. However, it is possible for a process to reconfigure it-

41

int main(int argc, char **argv)

/*** Prologue ***/
sok-argsat sarge;
sok-inportt *in;
sok-outport-t *out;

SokParseOptions(argc, argv, &sargs);
in SokRegisterInport("color",

SokTYPE(uint8), 0, NULL);
out = SokRegisterOutport("shape",

SokTYPE(uint8), 0, NULL);

/*** Registration ***/
if (SokInit(&sargs) - SOKOK) {

/**** Body Code Block ****/
/* ... setup body */

/* .. event loop */
while (1) f

SokEventWait C...);

/*** Epilogue (SokInitO0 failed or returned) ***/

exit(O);

Figure 2.3: Outline of typical code flow for a sok-process, created via
the C library. The call to SokInit() instantiates all the ports and
registers the process in sok space. The original process does not return
from this call until the sok-proces is deregistered. A child process is
forked and returns from this call in order to spawn the body code block.

42

self - - by declaring new ports, for example - and then call SokInit 0
again to return to sok space, reborn as a new sok-process.

2.5 Arbitrators and Inports

By default, an inport acts like a pigeonhole for incoming data from
connected outports. When a new message is received, it overwrites any
old message and a "new data" flag is set for the inport. This default
behavior can be changed by defining an arbitrator for the inport.

An arbitrator allows one to implement more complex data handling,
including processing which is connection-specific. It is essentially a
stateful filter. Possibilities include accumulating inputs (the port de-
livers a running sum of all received messages), per-connection noise
filtering, subsumption-type connections (where incoming messages on
one connection inhibit other connections for a fixed period of time),
and neural-net-like weighting of connections.

Arbitrators are implemented as sets of callback functions which are
run at a number of points in an inport's life-cycle: creation/destruction,
connection/disconnection, data reception, and dump/restore. These
functions are called in the process space of the handler code -- not
the body code - so they must be written carefully. In particular, the
data-received callback must be lightweight since it is called for every
incoming message.

Arbitrators can also request a shared memory block so that they
can communicate parameters with the body process, such as weights
or timeout values for incoming connections.

2.6 Simple Type Compiler

One of the main goals of sok is to enable processes to automatically
connect themselves to each other at runtime. To provide some clue as
to when such connections are appropriate, sok ports are typed. Each
port carries a type signature - the typeid -- which identifies the type
in terms of primitive integer and floating-point elements. Ports with
mismatched typeid's are not allowed to connect to each other. Typeids
are also catalogued by the locator daemon, so it is possible to query
the locator for a lists of compatible ports on other sok-processes.

The sok type system is similar to the IDL of CORBA [38]. sok
types are defined in a description file which is processed by sokstc,
the sok type compiler, to produce appropriate C code and header files.

43

primitive types: float, double,
int8, intl6, int32, uint8, uintl6, uint32

compound types: (array subtype N)
(struct (type-spec name) ...)

constant definition: (defconst NAME value)
type definition: (def type name type-spec)

Table 2.1: Syntax of the sok type description language. A name must
be a valid C identifier, since type definitions are literally converted into
C code. A type-spec can be any single primitive or compound type. The
primitive types correspond to the standard floating point and integer
C data types, and the compound types are equivalent to C arrays and
structs.

sokstc is also embedded in the sok C library. This allows progranm, to
dynamically parse type descriptions at run-time.

sokstc is implemented using SIOD [14], a small embeddable Scheme
interpreter which compiles very easily on the QNX platform. sokstc
description files are actually Scheme programs with support for rudi-
mentary macro operations. The description language syntax is outlined
in Table 2.1. defconstant is used to define symbolic constants, which
appear as #define'd constants in the header files generated by sokstc.
def type defines a typeid in term.s of predefined primitive or compound
types. The ten primitive types correspond to the common floating-point
and signed/unsigned integer types in C. The two compound types are
arrays and structures. Arrays are fixed-length vectors of a single sub-
type; structures are fixed, naamed collections of any other defined types.
Variable length or recursive type definitions are not allowed.

The standalone sokstc reads a description (. stc) file and produces
a pair of C header (. h) and code (. c) files. These contain definitions for
the type signatures as well as matching C type declarations (typedef)
which can be used in user code. The signatures are used to register
ports, and the declarations are used to access the port buffers. The
embedded compiler can be accessed by calling SokstcParseFile(0.
This will open a file by name, parse it, and return an array of typeids.

The sok C library includes a number of other functions for working
with typeids, such as walking through a typeid or typed buffer, locat-
ing elements in a typed buffer, and generating new structure or array
typeids from other typeids.

44

2.7 Dump and Restore

sok supports the ability to dump and restore the state of sok space. This
is important because the collection of running sok-processes and the
connections between them can change as the robot runs. The results of
learning and adaptation by the robot accumulate in the process network
as well as the individual processes themselves.

sok-processes respond to a "dump" request by saving the following
information to a disk file:

* process info: name, time stamp, command-line used to invoke the
process;

* connection info: lists of connections (by name) for each port;

* runtime info: contents of a specially-allocated block of parameter
memory.

The sok utility can be used to tell any or all proceses to save their
state to time-stamped files in a given directory.

When sok-processes receive a "restore" request, they read the des-
ignated state file and reverse the procedure, loading any parameter
memory and establishing the specified connections. The sok utility
can be used to recreate sok space from a collection of process state
files. It will invoke each process in turn, as directed by the state file,
and tell each new sok-process to restore itself.

If a process has any runtime state which should be saved, such as
a neural net which has been learned at runtime, that data needs to be
kept in a parameter memory buffer. This is a block of shared memory
which is accessible to the handler code and which is preserved between
invocations of the body code.

45

46

Chapter 3

meso

meso is the motor control architecture developed for this project. meso
provides a uniform interface for controlling the arms, torso, and head
of Cog via a collection of virtual muscles. It simulates a number of
key features of the human musculoskeletal system, features which are
important in a machine which will learn to move in a human-like way
and which should experience human-like interaction with the world.

meso breaks down into roughly three layers: low-level (hardware)
control, a skeletal model, and a muscular model. These are imple-
mented by several sok-processes distributed over several processors (Fig-
ure 3.1). This chapter first describes the rationale behind meso, fol-
lowed by details of each layer of the system. The last section describes
feedback mechanisms provided by meso and how they affect the oper-
ation of the robot.

3.1 Biomechanical Basis for Control

Cog is an anthropomorphic robot: one fundamental principle of its
mechanical design is that it should have enough degrees of freedom
and articulation to enable it to recognizably emulate human motor
behavior. This mandates a minimum hardware requirement: e.g. Cog
needs two human-like arms, because it can't pretend to move an arm
it doesn't have. There is no such fundamental requirement for the
control system, though. A very elaborate animatronic motor controller
can produce very life-like canned motion, although the controller itself
bears little resemblance to a biological motor system.

Cog was not built to produce canned animations; the goal of the
project is to explore mechanismrs for generating and learning social

47

Figure 3.1: Overview of meso. Black boxes indicate sok-proceses; blue
boxes indicate separate processors. Due to hardware I/O peculiari-
ties, each motor controller (D/A) board runs on its own processing
node. Originally implemented as separate processe, the skeletal and
muscular model eventually merged into the same process to reduce
coFmmuication latencies and improve performance.

48

A B

Figure 3.2: Cog's arms have six single-axis actuators (A); however,
they are controlled as if they were actuated by antagonistic pairs of real
muscles (B). These virtual muscles can span multiple joints, coupling
their movements together.

behavior. Perhaps, if Cog's emulation of the human form includes key
features of the motor system, the learning mechanisms will have a very
natural form. With that in mind, Cog's actuators should incorporate
human-like control as well as mechanics.

It would be impossible to give muscles to Cog without entirely re-
building the robot from scratch. But, it is possible to implement an
abstraction layer which provides an effective simulation of human mus-
culature. meso is this abstraction layer. Cog's raw actuators are torque-
controlled motors [49]. meso builds on top of them, simulating "virtual
muscles" which mimic the operation of muscles in a human body (Fig-
ure 3.2).

meso incorporates three essential features of the human muscu-
loskeletal system: reflex stiffness, polyarticulate coupling, and a fa-
tigue model. This allows production of human-like movement which
a higher-level control system can tune and optimize via biologically
relevant feedback cues.

Reflex Stiffness

Human muscle tissue is mechanically very different from electric mo-
tors, even motors under force-control. Much work has been done to
model how muscle tissues produce forces and react to loads [51]. How-
ever, an accurate simulation of muscle tissue itself is not necessary. The
brain's motor cortex does not directly activate muscles; the cortex con-
nects to spinal motor neurons which control the muscles in conjunction

49

with spinal reflex loops. Using input from stress and strain sensors in
the muscles and tendons, these reflexes make antagonistic pairs of mus-
cles act like simple damped, linear springs over a wide range of motion
[29].

meso incorporates this subcortical machinery into its simulation in
the form of a spring law to calculate muscle force. Each virtual muscle
plays the role of a pair of biological muscles along with their associated
spinal feedback loops.

Polyarticulate Coupling

Many muscles in the human body span more than one joint. For exam-
ple, the biceps and triceps each span both the elbow and shoulder joints.
Such muscles are kinematically redundant, because identical arm con-
figurations can be produced using muscles which span only one joint.
However, polyarticulate muscles have at least two important effects on
the dynamics of the limbs.

First, a multi-joint arm actuated by single-joint linear springs will
not have isotropic stiffness in endpoint coordinates [24]. In other words,
the hand will react with varying stiffness when pushed in different. direc-
tions, anld the stiffness proffle will be a function of limb configuration.
Polyarticulate muscles add a tunable interjoint coupling, which allows
for control of the endpoint stiffness over a wide range of the workspace,
independent of the limb configuration. The endpoint stiffness can be
made not only isotropic, but can be tuned to match the task at hand.
For example, accurately placing a puzzle piece on a table requires high
XY stiffness but low Z stiffness, to get precise position control in the
plane of the table yet avoid bouncing when eventually making contact
with the table.

A second dynamic effect is that polyarticulate muscles can make
the musculoskeletal system more efficient [21, pp. 29 8-303]. Applying a
force in certain configurations of a multi-joint limb results in some mus-
cles undergoing a "lengthening contraction" (Figure 3.3). That is, the
muscle applies force while being stretched, thus doing negative work.
Although this quantity of energy is wasted as heat, other muscles must
provide that work, which is never seen at the output of the limb. In
these cases, a stiff biarticulate muscle can act as a mechanical linkage
which lets the limb produce the same force, but without wasting the
work.

Cog has no real polyarticulate actuators (each joint is driven by a
single motor), and a simulation of such won't make the robot any more
efficient in terms of real physical energy. However, if energy consump-

50

x x

A
x x

Figure 3.3: The illustrations depict a simple two-segment arm with
monoarticulate muscles at each joint. The initial position of the arm
is shown in black. (A) To do work along X -- that is, to apply a force
along that vector - the arm must move into the blue configuiration.
The torques required to produce such a force are given by f x F, where
moment arm F is the vector from the joint to the endpoint. The two
joints apply torques F, and fb in the same directions as they are dis-
placed, thus both contributing to the output work. (B) In a different
configuration which does the same overall work, the lower joint must
apply a torque in opposition to its displacement. (This is counterin-
tuitive, but readily apparent when you consider that the dotted hine is
the moment arm.) This joint is absorbing energy, and that energy must
ultimately be provided by the other joint.

51

tion is part of the simulation, then movements which utilize polyartic-
ulate virtual muscles in this way will appear more optimal than those
which don't. This bias will further favor the development of human-like
movement.

Fatigue

Cog's motors have completely alien fatigue characteristics compared to
human muscle. Given an unquenched power supply from the national
power grid, the motors can apply a wide range of forces indefinitely,
as long as they don't overheat. Human muscles get tired much more
quickly, and this affects not only how much they are used, but also how
they are used.

Constraining the motors to operate under a muscular fatigue model
should encourage the development of both human-like movement and
behavior. The model used by meso reflects the basic metabolic pro-
cesses in muscle [35, ch. 61, including a reservoir of energy for penalty-
free short-term activity. The fatigue level of a virtual muscle implicitly
affects motor performance and is also accessible as direct feedback to
the higher-level control system. The model is tunable, making it possi-
ble to simulate different stages of growth and ability, as well as different
types of muscle tissue.

What meso Doesn't Do

meso does not implement motor control using postural primitives 150].
The notion of a postural primitive came out of work by Bizzi and Mussa-
Ivaldi on motor activity in spinalized frogs [4, 37, 22]. They discovered
that the endpoint forces in a frog's leg produced by activating neurons
in certain regions of its spinal cord took the form of force fields mod-
ulated by the activation. Each neuron produced a specific force field
(forces varying with the position of the endpoint), and the overall mag-
nitude of the field was scaled by the activation. Activation of multiple
neurons is additive; the fields of each individual neuron seem to be
simply summed. Most fields were convergent, meaning there was some
endpoint position to which the limb was pushed from any direction .--
in other words, an equilibrium point. On a simple level, this is all con-
sistent with treating the muscle groups as spring-like when acting in
conjunction with spinal feedback.

In a number of robotics projects ([36, 34, 32]), these equilibrium
points are abstracted into a collection postural primitives. Each prim-
itive corresponds to one vector of set-points for the set of spring-like
controllers driving each joint. Movement is produced by interpolating

52

between primitives, i.e. moving the set-points of the springs from one
position to another. The joint angle set-points can be moved around
within the convex hull of the chosen primitives, although the joint an-
gles themselves will stray because the joints are springy.

This has always been a profoundly unsatisfying control scheme to
me. The way it is typically implemented amounts to little more than
a sloppy (low-stiffness) position control loop. The stiffness of each
spring is made constant, and all the interesting dynamic effects, such
as changes in compliance over the path of a trajectory and adjusting
for contact forces, are ignored.

In meso, virtual muscles are controlled by supplying the stiffness and
the set-point velocity. The idea of controlling the velocity rather than
the position was inspired by Pierce [41]. Since a zero velocity is equiva-
lent to "no change", the learning modules of pa met cani safely probe the

operation of the virtual muscles by sending progressively larger velocity
commands. Furthermore, the motion is intrinsically smoother: a hic-
cup in a stream of velocity commands has far less potential for damage
than a 5.0 -* -1.2 -+ 4.9 glitch in a stream of position comiands.

3.2 Low-level Motor Control

Cog's arms and torso are actuated by torque-controlled electric motors.
Most robotic actuators, particularly in manufacturing automation, use
position control: the primary control parameter is the actuator's posi-
tion, and the motor is driven so as to track a target position as accu-
rately as possible. Under torque control, the primary control parameter
is the output torque of the actuator, regardless of position.

Position-controlled devices are typically very stiff. The ideal position-
controlled actuator would lock on to its set-point and produce a poten-
tially infinite force in response to a disturbance. Such a mechanism is
perfect for, say, accurately placing parts on a circuit board in a care-
fully controlled assembly line. Cog, however, needs to interact with
and explore an uncertain world full of breakable people and things. We
want its actuators to be squishy and compliant: Cog should reach out
to shake a visitor's hand without breaking her arm.

A low-gain feedback loop in position control will yield a softer, more
compliant actuator but at the expense of sloppy positioning and still no
real control of the forces it produces. Electric motors, with high ratio
gearboxes, are not very backdriveable. The output shafts do not turn
freely due to friction in the motor and gearbox. A position controller,
whether sloppy or stiff, will also do nothing to reduce the drag and

53

torquecell

Copley 48drv

amplifier rre motor

mV stnn

Host PC DPSignal
5vsina conditioner

Figure 3.4: Torque feedback loop controlling the torso motors. A tor-
sional load cell in series with each motor's output shaft measures the
torque being applied to each joint. Control of the arm and hand mo-
tors is similar, except that the torque cell is replaced by a "series-elastic
element", which is intentionally compliant.

resistance in an actuator. Under torque control, though, when zero
torque is commanded, the motor will actually be actively driven to
counteract the frictional forces. A torque-controlled actuator can be
smoothly tuned down to a completely floppy stiffness of zero.

The complete feedback loop of a torso joint on Cog is illustrated in
Figure 3.4. Torque is measured by a torsional load cell bolted in series
with the motor. The controller is a Motion Engineering Inc. multi-axis
motor control card ["MEI card"] with an embedded DSP. The torque
signal is measured by the the card, which produces a motor control
voltage according to a general PID (proportional-integral-derivative)
control law. The control voltage is turned into a high-power drive
current. by a Copley amplifier which feeds the motor. The torso motors
are also equipped with optical encoders and limit switches so that their
positions can be accurately measured.

The arms are driven with a slightly more elaborate mechanism
called series elastic actuators, described in detail by Williamson [49].
The torque measuring element is actually a torsion spring equipped
with strain gauges. The spring acts as a mechanical low-pass filter
which absorbs shock loads - impulses generated when the arm knocks
into objects (including the robot itself). Shock loads can strip teeth in
a motor's gearbox; the elastic element makes an actuator much more
robust if it is expected to knock into things a lot. It also makes the

54

actuator more stable in response to contact forces, i.e. touching hard
immovable objects.

The springs in the arms are quite stiff, but flexible enough that
optical encoders in the motors cannot accurately measure joint position.
Instead, arm position is measured by ring potentiometers installed at
the spring output of each joint.

The MEI card is programmed to run the torque control loop at 1600
Hz. The effective bandwidth of the series elastic actuators, however,
measures about 25-30 Hz, due to compliance of the spring and the
cables in the drive mechanism. Four MEI cards are used in total, to
control Cog's 22 actuators. Each card interfaces to the upper layers of
meso via a sok program aptly titled mei-glue. This program provides
an inport for torque commands and, for the torso motors, an outport
for encoder position. The arm position potentiometers are actually
scanned by a separate United Electronics Inc. A/D (analog-to-digital)
card, interfaced to the system via uei-glue.

The head and eye actuators are, unfortunately, not equipped with
torque sensors and are instead driven with position control. Since the
head and eyes do not make physical contact with the environment in
everyday use, this is not such a drawback. However, the head and eyes
do not have variable compliance, and they cannot be coupled to the
torso or arms via virtual muscles. In the human body, the eye muscles
are independent of the rest of the musculature and are under a more
position-like mode of control. The neck is, however, strongly coupled to
the torso. Cog is unable to display such motor effects as compensatory
stiffening of the neck when the torso leans forward.

3.3 Skeletal Model

Layered on top of the low-level torque control is a skeletal model which
simulates the kinematics of the skeleton and virtual muscles. The skele-
tal model essentially computes two functions: the muscle lengths F(A)
as a function of joint angles, and the joint torques 9(F, 9) as a function
of muscle forces and joint angles.

Two skeletal models were developed in the course of this research.
The first is fairly sophisticated -- incorporating a kinematic model of
the robot - yet fatally flawed. The second model is almost trivial in
comparison, but quite usable. Both models support virtual muscles
which can span multiple joints.

In either case., the skeletal model was originally implemented as a
sok-process wrapped around functions for the lengths I and torques f.

55

New joint angle d mensages from motor glue processes would cause 1 to
be recalculated and sent up to the muscular model. Incoming force F
messages from the muscular model would cause 9 to be recalculated and
sent back to the motor glue processes. Eventually these two functions
were merged into the same process as the muscular model to avoid
communication latencies. The complete control loop of the merged
system runs at 500 Hz.

3.3.1 Complex Coupling

In the complex coupling model, a virtual muscle is a mechanical ele-
ment anchored at two points on different body segments of the skeleton
(Figure 3.5). The muscle exerts a force directed along the line joining
the two anchor points. As the robot moves (or is moved), the effective
torques applied by the virtual muscles change according to the config-
uration of the skeleton. If a real force were being exerted between the
anchor points, it would produce a torque at each joint spanned by the
muscle. In the model, these torques are calculated and the resulting
values are used to command the motors at those. joints. Since the same
torques appear in the body of the robot, the niechanical effect of the
virtual muscle is equivalent to that of the real muscle. This method
of simulating mechanical elements is developed much more elaborately
in Pratt's virtual model control [42], in which the multi-joint legs of a
bipedal walking robot are made to act like a simple spring between the
body and the ground.

The expression for the torque on joint j due to muscle m is, by
definition,

it..= Fm X F

where f is the force vector between two anchor points i;A and flB, and
Fj is the vector joining the pivot 4 of joint j to either anchor (e.g.
F = PYA - 4). Likewise, the length of the muscle is just the distance
between the two anchor points:

Im = IHPTA -fiB11

Once , are calculated for all muscles, the total torque for joint j is

The complexity comes in calculating the actual vectors. This is ex-
plained in full detail in Appendix A and summarized below.

56

Figure 3.5: Example of complex coupling. Virtual muscles (purple) are
lines of force acting between points anchored relative to different links
(blue) in the skeleton. Thin red lines indicate the coordinate frames of
each link. The figure itself is a screen capture of mesokinescope, the
program created to compose skeletal models and monitor the skeleton
in real-time.

57

J-lyjý

frame j - 1

Figure 3.6: Coordinate frame (j - 1) is the parent of frame j. Vectors)IT
and i ' describe the same point, but relative to the respective frames.

j-'I defines the origin of frame j.

Each jointed segment of the robot is a link in a kinematic chain.1

Each link defines a local coordinate frame, with its origin at the axis
of its joint (Figure 3.6). That joint is anchored in the frame of the
link's predecessor; that is, the location of that joint is determined by a
vector in the frame of the previous link in the chain. (The base of the
robot, anchored to the ground, provides the base reference frame for
the chain.) Each link is thus parameterized by a 3-d position vector (4)
and an additional 3 parameters (a, f, 0) which specify the orientation
of the joint axis. Each muscle is defined by two anchor points anchored
to different links, i and k, and specified by vectors, '#A and k-#B, in the
corresponding frames.

Consecutive frames are related to each other by an affine transform,
j_'T, determined by the six parameters which locate one link within the

other. These transfornis can be cascaded to yield 'T for any two frames
along the chain. Using the appropriate 'T, one can transform all #A,

#B, and ý vectors into the same coordinate frame and then evaluate
the length and cross-product using common vector operations.

'Actually, a kinematic tree in the case of Cog.

58

Only 2N - 1 transforms need to be computed for a muscle which
spans N joints. If the kinematic parameters are known in advance, the
necessary transfornms can be precomputed up to factors of the sine and
cosine of the joint angles. This is precisely how the complex coupling
model is implemented: a muscle compiler, mesoc, reads a description
of the robot's skeleton and virtual muscles and produces C code for the
functions l(W) and f(F, W).

In Cog's case, this complex coupling was ultimately unusable be-
cause it isn't complex enough. In the human body, muscles are an-
chored to bones and they act via tendons which are constrained to
slide over the joints. The moment arms of such action are determined
by the routing of the tendons over knobby bones and other connective
tissue. In Cog's virtualized skeleton, muscles apply a force directly be.-
tween two points, and the moment arms are determined by how far the
muscle travels away from the joint axis. As shown in Figure 3.7, in a
straight configuration a muscle can only apply a torque if it is anchored
away from the skeleton. However, in an angled configuration, the an-
chor points may touch or cross, or the line of force may cross to the
other side of the joint, reversing the torque! This restricts the useful
range of most muscles to the point where they are just not useful.

Fixing this problem requires modelling tendons and defining chan-
nels through which they are constrained to move. For the purposes
of meso and this thesis, this seemed to be more trouble than it was
worth. There exists at least one commercial package [251 which does
create dynamic models of tendons, sliding joints, knobby bones, and
muscles with multiple anchor points. It is not clear, though, that it
can compute this fast enough to be used in a real-time controller.

3.3.2 Simple Coupling

The flawed complex coupling model was discarded in favor of a much
simpler model which retained the key feature of polyarticulate coupling.
In the simple coupling model, a muscle acts like a cable attached to a
pulley driving the joint. The torque exerted by muscle m on joint j is
Tim = FmTrjim, where Tim is the "radius" of the pulley, and the total
torque on joint j is thus Tj = E,, F, rjm. The length or displacement
of muscle m is given by 1,m = Zj rjm(Oj - Ooj). The action of this
model is easy to visualize with the cable analogy in the one- or two-
joint cases (Figure 3.8); a muscle which couples three or more joints is
more analogous to a hydraulic system.

The physical geometry of the robot is not important to this model,
and the kinematic description of the skeleton is no longer needed. Yet,

59

Figure 3.7: Failure of the complex coupling model: A single virtual
muscle is shown highlighted in yellow. Its moment arm is the per-
pendicular (dotted line) from the joint to the muscle. When the joint
bends, the point-to-point line of force may cross the axis of the joint.
This effectively reverses the torque. A force which was expected to
extend the arm may, depending on the joint angle, cause it to contract.

rrb

Figure 3.8: In the simple coupling model, virtual muscles act like a cable
drawn around pulleys affixed to joints. Each pulley is described by a
radius rm (the moment arm). The torque exerted by all muscles on a
joint is rj = Er, Fmrj ... The length of a muscle is Im = E, rjm (Oi -

Ooj). Since the muscle's force law is linear, the absolute length (set by
the offset angles Ooj) is not important.

60

for a wide range of a joint's workspace, this model is actually a bet-
ter approximation of the action of a tendon which wraps around the
joint. Furthermore, the only parameters needed by this model are the
pulley radii rj,. No muscle compiler is necessary to achieve real-time
performance, so the model can be modified at runtime. This makes
development and testing much easier, too.

3.4 Muscular Model

The highest layer of meso is the muscular model, which determines the
dynamics of the virtual muscles. The job of the muscular model is
to compute the output forces F of the muscles as a function of their
lengths 1. The basic model is a simple damped spring:

F = -K(l - lo) - Bl + Fo,

where 10 is the equilibrium point (set-point), K is the stiffness, B is the
damping constant, and F0 is a length-independent bias.

This differs significantly from the behavior of an isolated biological
muscle. Real muscle tissue is typically modelled as a combination of
non-linear contractile and elastic elements (Figure 3.9). Pulse trains
from afferent motor neurons cause muscle fibers to twitch, and over the
bulk of the material a contraction is produced. The force is sensed by
nerves terminating in the tendons (Golgi tendon organs), and muscle
elongation is measured by nerves (spindle fibers) in the muscle itself
[131. Overall, real muscle acts as a source of non-linear contractile
force, not a spring.

However, feedback loops which connect the force and elongation
sensors, spinal ganglia, and muscle fibers do cause real muscles to ex-
hibit a spring-like response to perturbations. Motor centers in the brain
drive the muscles via the spinal ganglia by modulating the parameters
of those feedback loops. The model I am using is a compromise between
biological accuracy and convenience of control. It realizes the cumu-
lative effects of muscle tissue, spinal feedback loops, and the action of
antagonistic combinations of muscles. 2

The spring law is essentially the equation for a proportional-derivative
(PD) position controller. Unlike a typical PD controller, however, the
stiffness K is not tuned to an optimal value and fixed in place. K is a

2
Biological muscles can apply contractile forces only; one could easily make the

virtual muscles do this by adding a constraint that F < 0. This would consequently
require twice as many virtual muscles, to make sure that each had an antagonist
pulling against it.

61

contractile series

element elasticity

tparallel

elasticity

Figure 3.9: The classic Hill model of biological muscle tissue [51, 23].
All three elements are non-linear. The contractile element accounts for
the force produced due to neuronal activation, but for a given activation
this force is dependent on the velocity of contraction. The stiffness of
the series elastic element is not constant, but is proportional to the
exerted muscle force.

variable control parameter and is always set relatively low so that, the
joints remain "soft" in interactions with people and objects. When a
muscle is inactive (not being driven by a higher-level process outside of
meso), K drops to zero and the muscle is effectively limp. K also plays
a role in a fatigue model which further modulates the magnitude of F
(discussed in the next section). The damping constant B is the only
fixed l)arameter; it must be set appropriately for each muscle to keep
the controller stable.

The muscular model is implemented within a sok-process called mo-
tor/msprings, which computes P from Ffor all muscles at a frequency
of 500 Hz. It has control inports for B, F0 , and a masked pair of 9
and k vectors. The equilibrium point lo of a muscle is not set directly;
rather, it is controlled by commanding its velocity. This naturally con-
strains the robot's movements to be relatively smooth, no matter what
random values other processes may decide to send to the muscles. The VT
and k vectors are accompanied by a bitmask which determines which
muscles are affected by the input. A sok arbitrator is used so that
multiple processes commanding different muscles can send their mes-
sages simultaneously to the same single control inport. The vectors are
merged and processed as a single velocity/stiffness command at every
timestep. If the stream of commands to a muscle stops (i.e. the mes-
sage frequency falls below a limit of 5 Hz), then the muscle becomes
inactive and its stiffness is ramped down to zero. When the stream
begins again, the stiffness ramps back up to the commanded value.

62

3.5 Performance Feedback Mechanisms

Two important components of meso are the mechanisms with which it
provides performance feedback to higher control centers. Joint pain is a
"discomfort" signal produced when the joints are twisted close to their
mechanical limits. Muscle fatigue is expressed as both a discomfort
signal and a physical weakening produced when a muscle is overused.
These signals provide negative feedback to the learning processes de-
scribed in Chapter 5.

3.5.1 Joint Pain

Joint pain provides feedback to keep the robot from driving itself against
its physical limits, which is as unhealthy for robots as it is for humans.
Joint pain is produced by the motor/j limits module, which observes
the joint angles of the robot and generates a non-zero output 6 per joint
when the angle is within roughly 15% of its positive or negative limit.
This output accelerates as the limit is reached:

(= -L0 -<6- \OLI--OLOJ fOr0L0< 6 <&I1

where 0 is the current position, OLI is the physical limit, and OLo is
threshold of the pain-inducing region (Figure 3.10). The joint limits
are measured by simply keeping track of the min/max observed joint
angles; these are initially discovered by "exercising" the robot (manually
moving each joint to its limits), but can later be initialized from values
stored in a file. The limits decay (shrink) very slowly over time so that
the Jlimits module can adapt to drift in the position sensors. This
means that Cog, like its human operators, benefits from a good stretch
every now and then to exercise the fill ranges of its joints.

3.5.2 Muscle Fatigue

Just as joint pain provides the robot with feedback on the use of its
skeleton, muscle fatigue provides feedback on the use of its muscles.
A sense of fatigue gives Cog the means to optimize its movements to
reduce its overall effort. Although Cog itself has no need to conserve
energy (it doesn't foot the bill on its 60-amp AC circuit), it is hoped
that energy-efficient motion will also be more elegant motion, i.e. more
like a human and less like a (classic) robot. Furthermore, smooth,
efficient motor activity does reduce the wear and tear on the machine.

63

0.8
0.6

0.4

0.2
0
L1 LO HO HI

Figure 3.10: Joint pain response through the full range of a joint's
motion. The hard limits, L1 and Hi, are the mechanical limits set by
the stops in each joint. The boundaries of the pain regions, L0 and Ho,
can be independently set, for each joint.

Fatigue in biological muscles is still not very well understood. It is
believed to arise from a combination of chemical and metabolic factors
in the muscle tissue, as well as changes in the central nervous system
(CNS). In the muscle, depletion of energy stores and blood oxygen,
and accumulation of lactic acid, reduces the strength of muscle fiber
contractions and slows them down. In the CNS, the motor centers
themselves appear to habituate to motor commands and tire of firing
the motor neurons.

Adams [1] created a model of human energy metabolism and mus-
cle fatigue for use in Cog. This model simulates a circulatory sys-
tem, several major organs, and the levels of six blood chemicals (three
hormones and three fuels). It allows the robot to experience a wide
range of physical conditions, such as exhaustion, fear-induced stress, or
carbo-loading. However, none of those extremes are yet needed in this
project, and the attention to detail tends to obfuscate the workings of
the dynamics involved.

I have created a simple fatigue model, coded directly into the mus-
cle model, which provides gross dynamic properties similar to Adams'
work. As opposed to supplies of creatine phosphate, glycogen, glu-
cose, and fat, virtual muscles have only two abstract energy stores: a
short-term store Ss and a long-term store SL. Ss is used with no fa-
tigue effects until it is fully depleted. Subsequently, SL, takes over, with
consequences to strength and comfort as it is exhausted.

The fatigue model works as follows. At each time step in the mus-
cular model, after calculation of the desired output force F(1) for a
muscle, the required power P is computed according to

P = alFvI +fIFI + -yK

where v and K are the velocity and stiffness. The first term accounts
for the actual mechanical power involved (a muscle is penalized for pro-

64

ducing or absorbing work). The second term is a penalty for generating
a static force (it takes energy just to maintain tension). The third term
is a penalty for stiffness (it takes energy to hold antagonistic pairs in
mutual tension). The three parameters a, fl, and -y are tunable so that
different types of muscle can be simulated: some muscles are better at
quick exertions, others at providing large forces with little contraction.
So far, however, all the virtual muscles in Cog use the same parameters,
adjusted to favor static forces over stiffness.

The effect of P on the energy stores is computed via the follow-
ing algorithm, where Pavait is available influx of power obtained from
extramuscular metabolic sources, and At is the length of one time-step:

"* Calculate the required energy Se, = PAt and the available
metabolic energy Saail = PaaimiAt.

"• Deplete available source S,,,,,i by the required amount:

Sreq = Sre -- min(SreqSavail)

fS• >O,= Ss by - miin(Snq, Savqil)

• If Srq > 0, then deplete Ss by remaining required amount.

*If S..q > 0 still, then deplete SL by the remaining required
amount.

* If S.,ail > 0, then replenish Ss by the leftover available energy:

Ss = Ss + min(Savai, (Sso - Ss))

Savjil = Suva~i - min(Savaiz. (SSO - S.5))

* If Savaji > 0 still, then replenish SL by the leftover available
energy.

The energy stores never drop below zero, nor do they exceed their
maximum capacities Sso and SLO. The stores only get replenished if
the current required power P is less than the available extramuscular
infiux P,,avij, and the short-term store is replenished before the long-
term store.

The resulting SL level, relative to its maximum SLO, determines the
discomfort signal 6 and the efficiency level 4 for the muscle:

€ = -OL0L (3.1)

SL S 1/2 (3.2)
65

The discomfort is signalled directly to other processes via a sok out-
port, but the fatigue manifests itself solely by its effect on the muscle.
¢ modulates the force, so that the actual force value produced by the
muscle is Fout = OF. As SL decreases and fatigue increases, the ef-
fective muscle force and stiffness drop. Once SL = 0, the muscle is
completely exhausted and incapable of producing any force at all.

Figure 3.11 illustrates four stages of muscle exertion. When a muscle
is lightly used and P < Pa,,.uj (a), the muscle is completely unaffected.
Once P > Paaij (b), the muscle begins to draw energy from the short-
term store S 5 , which acts as a buffer for short-term exertion. At this
point, muscle performance is still unaffected. After Ss = 0 (c), the
long-term SL, begins to be depleted, and discomfort 6 begins to rise
and muscle efficiency 0 begins to fall. Eventually, SL drops to zero and
the muscle abruptly exhausts itself. The muscle will no longer produce
any force until P drops below Pawail (d) and it is allowed to recuperate.

The relative recovery times for Ss and SL are proportional to their
maximum capacities. SLO is set to 100 times Sso, and Pava.l set so that
full recovery takes approximately 15 minutes. SLo is set roughly so that
if the elbow is extended to 90 degrees via a single muscle, that muscle
will exhaust itself after two minutes. This limit was chosen because,
beyond that, the elbow motors tend to overheat and fail.

66

.

40 8

60.

40 - ,0 12 14 0 - 180

500 -- !

5O0

P e uie

0 :2 40 60 i 80 100 M2 140 160

a C d

Figure 3.11: An example of the effects of virtual fatigue on a virtual
muscle. The graphs show 160 seconds of discomfort anid efficiency
0, short-term Ss and long-term SL stores, the required force F and
the actual force produced, and the required power P. (a) Under light
exertion, the required power P is less than the modelled influx Pji
from metabolic processes, and the muscle is unaffected. (b) When
P > Po,,,j, the short-term store SS begins to be depleted, still with
no effect on muscle performance. (c) Once Ss is used up, then the
long-term store SL begins to be depleted, resulting in a decrease in
muscle efficiency and an increase in discomfort. At this point, the force
produced by the muscle begins to diverge from the force required of it.
Eventually, Sr. is exhausted, and the muscle can no longer produce any
force. (d) Once the muscle is allowed to relax and P < P.,,j again, it
begins to recuperate. The short-term store is replenished first, followed
by the long-term store.

67

68

Chapter 4

Touch and Vision

In addition to the torso and two arms, Cog has a hand (on its right arm)
and a head. These two body parts provide new senses for the robot.
The hand is outfitted with tactile sensors that give a coarse sense of
touch. The head has eyes formed of two cameras each, the basis of a
primitive vision system (by human standards). I am deeply indebted
to my colleagues Giorgio Metta and Paul Fitzpatrick, who developed
the head controller and much of the vision system.

This chapter describes the hand and the vision system as it is used
in this project.

4.1 The Hand and Touch

Cog has a single, right hand' (Figure 4.1); its mechanism was sketched
out by committee, but was fully designed by Aaron Edsinger, a fellow
graduate student, and fabricated by Aaron and myself. The hand has
three digits - thumb, finger, and "paddle" - -actuated by only two mo-
tors. The thumb and finger are linked mechanically and move together
to produce a pinching action.

Weight was a critical factor in the hand design, since the hand is
mounted at the very end of the arm. The best way to reduce weight
was to reduce the number of motors. This three-digit design was chosen
as the minimal arrangement which could produce a grasping motion
as well as a distinctly identifiable pointing gesture. Pointing is a key
communicative gesture, and was desired for a parallel project [45].

'The left hand exists as a box of parts; it has never been put together.

69

Figure 4.1: Cog's right hand, shown mounted on the right arm. It
comprises three digits - finger, thumb, and paddle but is actuated
by only two torque-controlled motors. The thumb and finger are driven
simultaneously by a single motor.

70

Figure 4.2: The four primary gestures of the hand: a) reaching, b)
grasping, c) pinching, and d) pointing.

Like the arms and torso, the hand is driven by series elastic actu-
ators and is torque-controlled. It also has absolute position feedback
via small potentiometers installed at the actuator output. Driving the
actuators to combinations of their position limits yields four primary
gestures: pointing, grasping, pinching, and reaching (Figure 4.2).

Tactile Sense

The hand is equipped with tactile sensors to provide the robot with
a sense of touch. The sensors are small force-sensitive resistor (FSR)
pads which, as the name suggests, respond to a change in pressure by
a change in resistance (Figure 4.3). The pads are covered with a thin
layer of high-density foam, which both protects them and makes their
mechanical response more uniform over a wider physical area. The
foam also helps the hand grip objects.

Twenty-two pads are installed altogether (Figure 4.4). They are
wired, however, to yield six tactile signals, one for each inner and outer
surface of each digit. Six tactile signals are hardly enough to perform
any dextrous manipulation, but they are plenty for the robot to tell if
it is bumping against an object or holding something large in its hand.

71

A5
1- 4•

!•1o o

Fr0 ¶00¶g) F- W-r)

(a) Resistance vs Force for raw (b) Voltage vs Force for combined
sensor, pad and interface circuit.

Figure 4.3: Response curves of the tactile sensors. The interface circuit
is tuned so that the sensors produce the sharpest response in the region
of low forces which are experienced when the robot touches objects and
people.

In this project, the tactile sense is primarily used as a reinforcement
signal for learning behaviors.

The analog signals from the tactile sensors are digitized by the same
A/D hardware used for the joint angle sensors and made available to
the system via the glue/uei module (Section 3.2). The signals are
sampled at 50 Hz. The final form of the signal is a value ranging from 0
to 1, normalized and clipped between adaptive minimum and maximum
values. The maximum value is simply taken as the maximum observed
filtered signal. The minimum value tracks the filtered signal value with
a one-second time constant on rising transitions and no delay on falling.
This allows the filter to compensate for drift in the zero-offset of the
sensors. Furthermore, it makes the tactile sense habituate to stimuli
over a short time period.

4.2 The Head and Vision

The vision software on Cog, which controls both the head and cameras,
was designed by Giorgio Metta and Paul Fitzpatrick [19] and based
on earlier work by Brian Scasselatti [44]. This section gives a brief
explanation of the significant features of that system and describes
how it is put to use in my own work. Figure 4.5 summarizes the entire
system; each subsection is described below.

72

Figure 4.4: Detail of the FSR sensors installed on the hand, shown
before the layer of protective foam was applied. The commercially-
produced sensors consist of conductive thin-film electrodes affixed to a
conductive rubber substrate. Compressing the substrate increases the
density of conductive particles and thus lowers the resistivity.

camteras

motion color skin face

Figure 4.5: Outline of the vision system. Black boxes indicate pro-
cesses; blue boxes indicate separate processor nodes. Analog video is
fed to a framegrabber on each processor which needs it. Most processes
only need the right wide-angle view. The disparity (stereopsis) module
uses both left and right cameras.

73

Figure 4.6: Cog's head, viewed from three angles. The eyes have three
degrees of freedom: shared tilt and individual pan. The head/neck
has four degrees of freedom: pan, tilt, roll, and a "lean". The head
motors axe position-controlled, using optical encoders to measure the
position of each joint. An electronic gyroscope, measuring inclination
and angular velocity, is mounted on the head, between and just behind
the eyes.

4.2.1 Motor System

Cog's head has a total of seven degrees-of-freedom. Three belong to
the eyes, which have independent pan control and a single tilt actua-
tor. The remaining four belong to the head itself: pan, tilt, roll, and
a "forward lean" axis (Figure 4.6). The axes are actuated by position-
controlled motors, using optical encoders for accurate position feed-
back. Some axes (e.g. head roll and tilt) are differentially driven; they
are controlled by the combined action of two motors. The head is
also equipped with an InterSense electronic gyroscope which measures
inclination (tilt with respect to gravity) and angular velocity.

74

Like the arm and torso, the head motors are driven by Copley ampli-
fiers and an MEI motion control card; however, the MEI card operates
in a position-feedback mode. The lowest level of motor control is via
command of velocities for each of the seven joints. The actuators have
no torque sensors, so torque feedback is impossible, and control of the
head cannot be fuilly integrated into meso. In other words, there can
be no virtual muscles which couple the neck with the torso or arms.
However, since the arms and torso are also controlled via velocities (of
virtual muscles), similar high-level controllers could be used to drive all
three. The head has, of course, no tunable stiffness parameters (9); it
is under accurate position-control and is always very stiff.

The head has two default motor reflexes: fixating both eyes on
the same target (vergence, discussed in the next section), and keeping
the eyes centered within their range of motion. When the gaze (with
respect to a central point-of-view) is not centered with respect to the
head, the head turns while simultaneously counter-rotating the eyes.
If the eyes are focused on some target in the robot's periphery, the
head will, after a short delay, begin turning in the same direction. The
eyes rotate in the opposite direction, so that gaze remains fixed on
the target. Once the head is pointing at the target, and the eyes are
centered with respect to the head, movement stops.

The gaze direction is stabilized by a combination of feed-forward
control (using the pre-computed kinematics of the head) and gyroscopic
feedback. Thus, the gaze angle is maintained even if the head is moved
externally, by motion of the torso. This is essentially an implementation
of the human vestibular ocular reflex (VOR) [39].

Although the head motor system can be directly controlled by com-
manding velocities for all seven joints, typically only the eye velocities
are specified. The centering reflex then moves the rest of the head in a
smooth natural-looking manner as it responds to the movement of the
eyes.

4.2.2 Image Processing

Cog has two eyes, and each eye has two color NTSC cameras. One
camera has a wide-angle (120') lens to provide full peripheral vision.
The other has a narrow-angle (150) lens to provide a higher resolution
in the center of the field of view, much like the human eye's fovea.
The four cameras are genlocked together (synchronized to a common
timebase).

The video streams are digitized by Imagenation PXC-1000 PCI
framegrabbers. Multiple processors in separate computing nodes work

75

on the same stream simultaneously (performing different operations).
Each such node has its own framegrabber(s); the analog camera signals
are multiplexed via distribution amplifiers to each node as required.
This is far more efficient (vis-4-vis network bandwidth) than digitizing
each camera stream once and piping the video around in digital form.
Those nodes which do need to exchange processed streams have direct
point-to-point full duplex 100base-T ethernet links.

Video streams are captured in 8-bit per channel R'G'B' encod-
ing, typically sampled at a resolution of 128x 128 non-square pixels.
Streams are non-interlaced; one field is simply discarded. Much of
the image processing is also performed using a log-polar representation
[17]. This is a lossy transform which reduces bandwidth by reducing
the image resolution at the periphery of the frame while maintaining
resolution at the center. A 16 kB rectilinear frame (128x128) requires
only 8 kB in log-polar form, a factor of two reduction in framesize (and
thus, processor cycles) for an image with little loss of utility. With
these optimizations, most of the image processing on Cog is able to run
at the full frame rate of 30 frames per second.

4.2.3 Vergence

The vergence system mentioned earlier computes the visual disparity
(measured in pixels) between the left and right wide camera images.
Using the known kinematics of the eyes and head, the pixel disparity
is transformed into a corrective velocity for the left eye and sent to the
motor control system. Cog is thus a right-eye dominant robot; the left
eye attempts to follow what the right eye is focused on. The disparity
measure and the differential pan angle of the two eyes together provide
the robot with a measure of the depth (distance) of the target.

The vergence control loop runs below full framerate, at 20 frames
per second.

4.2.4 Saliency and Attention

The vision system focuses on one target at a time, and this target is
chosen by an attentional mechanism. Several filters run in parallel over
the video stream of the right wide-angle camera, appraising each frame
for certain salient features. The attention system weighs the opinions of
these filters and decides on the image coordinates of the region yielding
the greatest total saliency. These coordinates are updated and sent to
the tracking system at frame rate. When the tracker decides to switch
to a new target, it uses the last coordinates it received.

76

Figure 4.7: Saliency and attention processing while looking at a walking
person. One frame each from the three saliency filters (vividness, skin
tone, and motion) and the attention system is shown. The vividness
filter picks out parts of the blue floor. The skin tone filter picks out
the person's arm and hair, a door, and the couch. The motion detector
highlights picks out two targets on the person's body. The regions
chosen by the filters are weighted together by the attention mechanism,
which favors the motion detector.

The attention mechanism currently uses three fiters. Two come
from the original Fitzpatrick/Metta vision system: for every video
frame, each fiter generates a list of up to five bounding boxes which
describe the image regions it considers most salient. The third filter,
a motion detector, was designed by me; instead of bounding boxes, it
outputs a list of up to five bounding circles (center coordinates and
radius). Figures 4.7 and 4.8 illustrate the output of the fiters and the
attention mechanism in two different visual scenarios.

The first filter distinguishes vivid colors; it describes regions with
high chroma content. This makes Cog sensitive to the brightly colored
toys which we researchers often wave in its face. The second filter is
a skin tone detector. Regardless of race, skin tones generally fit the
constraint (for R', G', and B' values ranging from 0 to 255):

1.05G' < R' < 2.OG'
0.9B' < RI < 2.OB'

20 < R' < 250

The "skin-tonedness" of pixels satisfying that constraint is estimated
via the formula [61:

S = 2.5(0.000968R12 + 0.217R'- 0.000501G'2 - 0.364G'

-0.00287B' 2 + 0.906B' - 50.1),

which is clipped to the range [0,255]. (Pixels which do not fit the
R'G'B' constraint are assigned zero.) A region-growing algorithm is

77

Figure 4.8: Saliency and attention processing while looking at the mov-
ing arm. One frame each from the three saliency filters (vividness, skin
tone, and motion) and the attention system is shown. The vividness fil-
ter picks out a portion of the blue floor and the red fabric on the robot.
The skin tone filter also picks out the fabric, and part of the robot arm.
The motion detector highlights a circular region containing the robot's
hand. The regions chosen by the filters are weighted together by the
attention mechanism, which favors the motion detector.

run over the image of S pixels to yield bounding boxes around skin-
toned portions of the frame. This filter makes Cog's eyes sensitive to
people, particularly their heads and hands. Unfortunately it also makes
Cog sensitive to wooden doors and furniture and cream-colored walls.

The third filter is a simple motion detector based on inter-frame
image differencing. Each new frame is subtracted from the previous
one, and then the difference image is thresholded, dilated, and tagged
using an 8-connected region-growing algorithm. The orientation of each
region is calculated, along with the extent along the major and minor
axes; this provides a description of each region by a rotated bounding
box. A salient disc for each region is chosen by picking the center point
halfway between the centroid and the maximum extent of the major
axis, in the direction closest to the upper left-hand corner of the screen,
with radius equal to the minor axis. This choice of position tends to
pick out both the heads or upper bodies of people moving around the
scene as well as the hand of the right arm when it moves into the field
of view. Note that the motion detection algorithm is useless when the
eyes are moving. Fortunately, the tracking system is implemented in
such a way that the eyes and head are stationary for a few moments
before a new target is acquired. The motion detector is gated so that
if it registers too much motion (e.g. a significant fraction of the scene),
it decides that the camera has moved and suppresses its output.

The attention system maintains a 128 x 128 saliency map; each value
in this map represents the saliency of the corresponding pixel in the
video streanm. With each new frame, the system multiplies the current

78

map by a decay factor 6. It then adds the weighted bounding boxes or
discs from each filter to the map. That is to say, if location (x, y) is
contained within a bounding box returned by a filter, and the weight
assigned to that filter is w, then w(1-6) is added to the value at location
(x, y) in the saliency map. 6 determines the persistence of saliency over
time. After the saliency map is updated, the location with the highest
saliency is determined, and these coordinates are output as the new
center of attention.

4.2.5 Tracking

A separate tracking module is used to consistently follow a visual target
as it moves around in the field of vision. The tracker receives the initial
target coordinates from the attention system. It then records a small
6x6 image patch centered around those coordinates, and this becomes
the target. Within each succeeding video frame, the tracker searches
for the target patch and outputs its new location.

The tracker anticipates tie new location based on the last location
and knowledge of the motion of the head and eyes. Starting at that
initial position, it searches around in a 10x 10 region using straightfor-
ward correlation until it finds the best match. The tracker then records
the matching region as the new target patch. If the tracker cannot find
a good enough match, it decides that the target has been lost, and it
then grabs a new target as directed by the attention system. The robot
never becomes hopelessly fixated on one target because the tracker is
not that good; in an active, moving world, a new target will usually
"get its attention" every few seconds or so.

The tracker sends the retinotopic coordinates of the target to the
eye motor control system, which then moves the eyes to try to center
the gaze on the target. Thus, the eyes will follow the target, and since
the head control attempts to keep the eyes centered in their range of
motion, the head will follow as well.

4.2.6 Vision System as a Black Box

Much of the vision system is built with an interprocess communications
protocol called YARP , 2 which is not particularly compatible with the
ports and connections created by sok. So, the vision system is (for this
project) interfaced to the rest of pamet via bridge modules which speak
both YARP and sok. This creates an opaque interface which hides all
the vision modules and their interconnections.

2
YARP was designed by Paul Fitzpatrick.

79

The vision system internally uses several coordinate frames: joint
angle, retinotopic, and gaze angle in the "world" coordinate frame. The
sok interface uses the world coordinates exclusively. Everything visual
is expressed in terms of 2-d gaze angle relative to the coordinate frame
of the shoulders, i.e. the mounting point of the base of the head.

A sok module named eye/tracker provides an interface to the
tracker. Its single outport streams the position of the target, expressed
as gaze angle and distance. The gaze angle is computed in world co-
ordinates from the eye/head joint angles and the target's retinotopic
position. The retinotopic-to-gaze transform is increasingly inaccurate
as the target moves off-center, but since the tracking system is always
trying to re-center the target, this is not a problem in practice. The tar-
get distance is estimated from the differential angle of the eyes, which
is actively controlled by the disparity feedback loop.

A module named eye/saliency provides an interface to the vi-
sual filters of the attention system. It has one outport for each filter
and simply forwards the bounding box lists which each produces, after
converting the retinotopic coordinates into gaze angles. As mentioned
above, this transform is not completely accurate, but it is good enough
to give a rough estimate of salient areas - which is all the filters provide
anyway.

Finally, a module named eye/features provides a feature vector
describing the target region being tracked by the attention tracker.
This vector has six parameters: red, green, blue, vividness, skin-tone,
and motion - each ranging from 0 to 1. The values are computed
using similar algorithms as the saliency filters but are averaged over a
16x 16 region of pixels centered over the tracker target.

80

Chapter 5

pamet

pamet is the system in Cog which does the "thinking" (as much as you
can call it that). It is a collection of modules (sok-processes) which
look for patterns in data flow, generate movements, respond to reward
and punishment, discover useful actions, and recognize and respond to
sensory stimuli. The modules are roughly divided into those which do
something, those which make models of what is being done, and those
which generate instances of the other two. The classes of modules are
distinguished primarily by the types of inputs and outputs they have.

pamet is a dynamic system: modules are created and destroyed as
time goes on. In general, the creation of a module indicates a hypothesis
that there is something to observe or to do which is potentially useful.
The same module may later be destroyed (reclaimed by the Great Bit
Bucket) due to disuse; this indicates that the hypothesis has proven
false.

pamet is also a distributed system: all modules run as separate
processes on a network of processors. This system could have been im-
plemented as a giant monolithic time-stepped process - in Matlab (or,
preferably, Octave) no less. In many ways, that would have been sub-
stantially simpler to build and debug. It would probably even work for
simulation. However, two of the challenges of this project were to cre-
ate a system which runs a real, physical robot, and to create a system
which can scale up to many, many more modules. In this distributed
implementation, the learning and analysis modules can use cycles on
isolated processors without interfering with the real-time behavior of
the action modules. As the system develops and more modules are cre-
ated and more processing cycles and memory are required, additional
processors can be added to the robot as it is running - the processing

81

S

Figure 5.1: A toy robot. It is just a finger with a single actuator and a
single tactile sensor. Its position is fully determined by the single value
0; the sensor yields a single value s.

hardware and operating system were chosen such that this is possi-
ble. The system is far from perfect, though, and a number of snags
and bottlenecks exist which would need to be resolved before "infinite
scalability" is possible. However, adhering to these goals has made the
resulting system much more real than it would have been otherwise.

5.1 A Toy Example: The Finger Robot

To get a feel for how pamet is organized, let's look at a toy implemen-
tation. Suppose that Cog is a very simple robot with only one working
actuator: a finger, which has a full one-dimensional repertoire of ex-
pression, from curled-up to pointing (Figure 5.1). This finger has tactile
sensors on it, and the robot's primitive emotional system is hard-coded
to signal pleasure in response to any tactile stimulus. Movement of
the finger is controlled under meso by a single velocity-controlled vir-
tual muscle, and the configuration of the finger is defined by a single
angular position (also available from meso).

5.1.1 Learning to Move

The lowest level of pamet's control of the robot will be two mover
modules, hard-coded by us, the roboticists. A mover module is very
sinmple; it does nothing until it receives a positive scalar activation signal
from some other process. While it is thus activated, it sends a fixed
stiffness vector and a scaled velocity vector to meso. Thus, a mover

82

emotion

A

Curlndcontroller
mesotatl

modue mkes he obotmo A mo deig ub. ofcthe mslswt

B

Figure 5.2: The robot has two movers, one for curling and one for
extension. (A) Each is observed by mover modellers, to see what effect,
if any, they have on 9 and s. (B) Two models relating the movers to 9
are learned, and a controller for the velocity 9' is created.

module makes the robot move by driving a subset of the muscles with
soeprofile of velocities. Our toy finger robot will have two movers:

one for curling the finger, and one for extending it (Figure 5.2(A)).
The movers are not actually completely subservient to external ac-

tivation; they also have internal random activation. At random times,
a mover will activate itself for a random duration and with a random
activation level. The rate of random activation is initialized to some
maximum value when the mover is created. As the mover is activated
more and more by external sources, this rate of internal activation de-
creases.

The robot's first order of business is to discover what these two
movers do. The robot has two state parameters, the tactile sensor value
and the finger position value, which are assumed to be independent.
pamet's proto-mover-modeller will spawn four mover-modeller modules,
one for each combination of state parameter and mover.

Each mover-modeller analyzes the interaction of its assigned state
parameter and mover module. It observes and records data from both

83

and then tries to fit a linear model of the state parameter's velocity as
a function of the mover's activation. Essentially, it tries to determine if
the mover has a direct causal effect on the state parameter. In our toy
robot, we would expect such an effect to exist between the movers and
the finger position, but not between the movers and the tactile signal.

If no model can be fit after some length of time, the mover-modeller
simply gives up and exits gracefully. If the mover-modeller does dis-
cover a model, it records it in pamet's model registry.

Another module, the proto-controller, monitors the registry for mover
models. It scans the registry and groups together all mover models
which affect the same state parameter. It then spawns a controller
module, which loads the models and connects itself to the relevant
movers (Figure 5.2(B)).

The controller module is an open-loop velocity controller for the
given state parameter. When it receives a velocity command on its
inport, it activates the mover which will most closely generate such a
velocity in the state parameter. The existence of a controller module for
a state parameter means that it has become a controllable parameter.

Once we turn on our toy robot, it will begin wiggling its finger,
due to the random activation of its movers. The mover-modellers will
observe this and create models relating the finger position to the mover
activation. Finally, a single controller will be spawned, which can drive
finger velocity by activating movers. The finger position has become
a controllable parameter, and the robot has effectively learned how to
move its finger.

5.1.2 Learning What to Do

At this point, the robot is just occasionally wiggling its finger back and
forth. We want it to learn a trick: "point the finger straight out when
touched". The first thing the robot needs to learn is "point the finger
straight out".

When the finger controller module is created, parmet's proto-action-
modeller will spawn an action-modeller which will observe the control-
lable parameter (finger position) and the robot's emotional state. It
will try to create an action model which correlates the finger position
with positive changes in emotional state (Figure 5.3(A)).

Squeezing the finger will cause a tactile sensation which is hard-
coded as a pleasurable response. So, we sit with the robot, and when-
ever it randomly happens to point its finger straight, we reward it by
squeezing the finger. The action-modeller will observe this and create
a model which essentially says that reward is expected when the finger

84

emotion

mesa tactile

A

Figue 53: A) ato modellerisgnrtdofndewdngo-

activatedt, it drives 0 to a prototypical value O0 via the controller,

is pointing straight.

The action-modeller will register this model and then spawn an ac-
tor modufle (Figure 5.3(B)). The actor has an activation inport, an
inport to monitor its controlled parameter, and a velocity outport con-
nected to the controller. Like a mover, an actor is silent until it receives
an activation signal. Once activated, it drive~s the controllable paramn-
eter to its most rewarding value (as encoded in the action model) and
tries to hold it there as long as the activation persists. An actor also

has an internal random activation rate, which decays over the life of
the actor.

So, after a session of rewarding our robot when it randomly straight-
ens and points its finge, it will create an actor module which, at ran-
dom, explicitly poins its finger. The robot has learned that pointing
is a good thing to do.

5.1.3 Learning When to Do It

The robot now knows that pointing its finger can bc a good thing to
do, but it doesn't know when to do it. The next thing the robot needs

85

tranig, tiger odl iscetd8hc act ivte thactionlhe

AA

0

WhgAe the poiting a or is createda rto-disoermrelar

woniiobservles diffrn stat paramchter andtilltytocreate themato.(B fe

withainboth thigerobots emotin istated andwhc activationsof the ptiont

ing actsor. Thle difrn statoenparameter canpotbye senor. aus oo

valuesorn evn therativationrlevels of othm l in the sy rte

When the pointing gea , wetas p ingermad then
weigie it: (A) bi suee tr a rerd.oTe trigger- modelle ias sin toew

moitorsethe tacilfersentsort willadevelop an triggetry mod whchrrshows that

aita tot the gerots inotion with activati the pioni ntn Afteor
moe aindth a trigger modules crated, which autsens it(e a5ti4(B))

the mensor evsen s tiatllons teh hen a oetot inpe stec tex a

tolarnose an waptptoptriate thger frobotito pointiwhng isthges aptproprat

isfied(r. Wh en th e pointingisteatap, tan ans actionisgerformdthe
wten spa ew i imient. Th jo or The trigger-istode(l ac ssode to
witobserve tadifferentstatewilrametelo and tiggery tode whicrrel them

withp bth the figrobt' emonjntiona witathn h activation of the pointin-ctr
wing atr.lal prhedifferentstate pearameer canhe soensor valuegstermthis
values, ord even thew actrivaiggveso ter modulewhhtLs inth(iue 5.y(B)).

Supoe woel ewantitoytrain thtwen robotrtoapint whaen iotgexts satapo
thefic erg. Whentile robot rgstarts atpoiandnatingona its finerormted,
thengv tabgsueea a reward. iimietThjoofThe trigger i opu hsmodellrasge to

moitrth tcilsesr il evlo tige mde hih hwstht

work. The trigger monitors the tactile sensor, and when a tap occurs,
it will activate the pointing actor. Thus, we have successfully trained
our toy robot to point its finger when we tap it.

5.2 Names and Data Types

All of the modules which make up pamet are implemented as sok-
processes; data is passed between these modules via messages sent along
connections between inports and outports. Data streams typically fall
into one of three categories: state parameters, activation values, and
velocity drive values.

State parameters (s) are continuous streams of fixed-size vectors,
such as the 17-dof vector of joint angles on the robot. Such data are
samples of the state of some continuous process on the robot. Data
is sent at a fixed frequency which is a compromise between temporal
resolution and data rates. Most velocity-controlled motor data flows at
50 Hz; the motor control of meso operates at 500Hz; vision data (e.g.
visual feature vector) is frame-rate limited to 30 Hz.

Activation values (A) are intermittent streams of scalar samples
which activate a receiving process. When "off", no data is transmitted.
When "on", messages are sent at a fixed rate (typically 50 Hz). The
receiving process remains active as long as a continuous streanm of data
comes in. Although the values of the data itself are generally ignored
by the receiver, it usually reflects the probability behind the decision
to produce the activation.

Some state parameters (e.g. joint angles) can be actively controlled.
Each suchl parameter will have an associated inport somewhere in the
system for a drive value consisting of a velocity vector (6Y). The state
parameter will be driven with the commanded velocity as long as a
continuous stream of commands is received on the port.

pamet is a dynamic system; ideally, all of these various parameters
are discovered, connected, and modelled automatically. This is accom-
plished primarily by conventions for naming the ports. Regardless of
the sok-process names, all outports which export a state parameter
have names of the form STATE. abc, where the "abc" is an optional la-
bel for any human observers. Likewise, activation inports are labeled
ACT. abc. Modules which have an activation input usually have an
activation output as well, which broadcasts the activation state of the
module to observers; these are named AOUT. abc. Velocity drive inports
are named VEL. abc.

The various modules themselves also have canonical names. Dy-

87

namically-generated modules have names of the form _ABC/OxNNNNNNNN,
where .ABC is a prefix determined by the type of module and the suf-
fix is the hexadecimal hash value of an automatically-generated string
which describes what the module does. These hash values are not par-
ticularly human-readable, but they are at least consistent. Modules
created in successive runs or experiments, but which serve the same
function, will keep the same name.]

Models and other metadata are stored in flat-file databases on the
filesystem. Such data is only necessary for the development of the
system (creating new models and modules and connecting them), not
for real-time functioning at any particular stage of development. Both
the filesystem and various support daemons (such as the sok locator)
can go down, but Cog will continue to function. It won't be able to get
any smarter, but it won't get any dumber, either.

5.3 A Menagerie of Modules and Models

pamet as a framework has a cyclic nature. In general, for every module
that generates activity, there is a model of that activity, and in turn
a module that creates and updates that model. And for every model,
there is another module which uses it to create a new activity. Each
model acts as an abstraction barrier, taking a nebulous set of data and
statistics and packaging it into a discrete, tangible entity.

As illustrated in Table 5.1, there are 5 basic classes of activity mod-
ules: movers, controllers, actors, triggers, and transformers. Each one
has a notion of "activation"; these modules sit quietly until input from
another module (or random input from within) causes them to wake up
and perform a stereotyped function. Associated with these are a variety
of models: mover, position-constant action, position-parameter action,
velocity-constant action, position trigger, delay trigger, etc. Each type
of model has a modeller module which creates and manages instances
of the model.

This set of classes has developed as the minimal set necessary for
the robot to learn the complete task of "pointing at some visible target".
Originally, I began this project envisioning a complete, self-contained,
"universal" set of modules and models which could be endlessly com-
bined and connected to enable the robot to learn anything that a human
could. In retrospect, that universal set might be extremely large. The

IAfter a while, you look at the list of running processes and just know that
_PCMod/Ox2F788AD2 is the position-constant action modeller observing the right arm
joint angle vector. It's a bit like "reading the Matrix".

88

Class Inputs I Outputs Instance IModeller I
mover J A I [_MV/ _M.vMOD/I]
controller I i" I A I- 'I
actor

position-constant A, .9 v _PCA/] _PCMod/
position-parameter A, 9'1, 92 ____ _PPA/ _PPMod/

velocity-constant A, " _VCA/ _VCMod/

position _____ A -PJTG/ _PTMod_/
trigger2]__________________

activation-delay A1, A2 A _ATG/ _ATMod/
transformer J 1, vr2 s 2, iV-, A _X'FM/ [_TFl1od/]

Table 5.1: Classes of modules implemented in pamet; most classes in-
clude a modeller module for creating models, and an instance module
for using the models. Each class is distinguished by the type of data it
consumes and produces. A is an activation signal; g9is a state parameter
vector; V is the velocity of a state parameter.

module/model learning cycle works because each class encompasses a
very focused and specific type of knowledge.

The rest of this chapter describes the various instance/activity mod-
ules. Most modules are associated with some type of model; these
models are discussed in Chapter 6.

5.3.1 Movers

A mover module is, in the simplest terms, a module that causes some-
thing to move when it is activated. It has a single scalar input which
determines the rate or intensity of the movement. In particular, meso
movers are the basic interface between pamet and the virtual muscles
provided by meso. When inactive (not receiving an activation input),
meso movers do nothing. When active, they send a hard-coded vector of
velocities and stiffness values to meso to activate a certain combination
of virtual muscles. For example, the _MV/hand/right-grasp mover
will make the fingers of the right hand contract (without affecting any
other actuators).

Movers have internal random activation, which causes them to turn
on spontaneously. This is roughly a Poisson process, set by a baseline
average activation rate. This base rate will decrease over time as more
and more explicit external activation is received. The idea is that the

89

mover starts out firing spontaneously to facilitate an exploratory phase
of activity. As the behavior and effects of the mover are modelled and
other modules begin to explicitly use the mover to produce actions,
then the spontaneous firing is inhibited.

The meso mover modules are essentially a well-justified hack. They
were created as a way to bootstrap the learning process, to get the robot
to simply move before it has learned any reasons to move. The complete
set is hand-crafted to reflect a repertoire of basic two- or three-actuator
motion combinations. They are further described in Section 7.1.

When the robot is first turned on (i.e. early on in a run of Cog's
"development cycle"), mover modellers are spawned by a proto-mover-
modeller module. Each mover modeller attempts to find a reliable re-
lationship between a particular mover's activation level and some state
vector, e.g. the joint angles of the robot. For each such relationship
found, a mover model is created. These models are used to create
controllers, described next.

5.3.2 Controllers

A controller is a module which multiplexes a group of movers together
to control the velocity of a state parameter. That parameter then be-
comes a controllable parameter. Controllers are created dynamically
depending on the available mover models. Recall that each mover
model characterizes a mover as influencing a particular state param-
eter (e.g. a subset of the robot's joint angles). The set of all mover
models is partitioned into groups such that models within the same
group have overlapping influence (intersecting subsets), and nmodels in
separate groups are independent. For each group, a controller is cre-
ated, to which those models are assigned. Each controller registers
itself as capable of controlling a state parameter which is the union of
all parameters influenced by its group of movers.

The basic structure of a controller is shown in Figure 5.5. It has
single velocity command input jY, and one drive output Ai for each
mover under its command. A controller is an activatable module; it
sits quietly until it receives a streamn of velocity commands. It then
activates the single mover m which best matches 6 according to the
criterion

m = arg max(___)

where n,,. is the state velocity produced by mover m (given by the

90

controller w

aiiptUv models) h
SA2 t•"

LT2ýý -\model)

_ Ak ,
Fm-o~r]4 4---model)

Figure 5.5: A controller module, which receives, a velocity command
ir at its inport. Using the mover models it has loaded, the controller

decides which of the connected mover modules to activate, via drive
outports Ai.

mover model). The activation sent to m is simply:

Am, IIim I
V - m

The other drive outports remain silent. (Although, when an outport is
going to become silent, the last value sent is a 0.0; this is just to aid in
diagnosing the system.)

Note that many modules can connect to a controller's i6 command
inport. To resolve the possible contention due to multiple modules
trying to command different velocities simultaneously, this inport is
equipped with a GrabArbitrator. When the Vport receives a message
and becomes active, the source process of that message receives control.
All other message sources are ignored until the controlling source stops
transmitting (i..e. fails to send another message within a timeout period
of -60 ins).

5.3.3 Actors

Each instantiated controller module gives pamet a knob to twist. Actors
are the modules which do the twisting, and action models describe
what twisting they do. An action model is essentially a description
of a discrete, primitive action. Two types of action models have been
implemented for pamet:

* position-constant action: Drive a controllable parameter to a par-
ticular constant value.

91

* position-parameter action: Drive a controllable parameter to match
a varying input parameter.

Other varieties are envisioned (e.g. "velocity-constant" and "velocity-
parameter"); however these are the only two implemented so far.

The impetus for having action models is to simplify learning by
distinguishing "what to do" from "when to do it". An action model
defines a very simple small behavior and makes it tangible. Action
models can be used as building blocks for more complex actions. Action
models can be compared with one another.

Action models are created by action modeller modules, which are
themselves generated by a proto-action-modeller. In general, for each
type of action, there is one action modeller assigned to each controllable
parameter in the system. When new controllable parameters arise (via
the birth of a new controller), then new action modellers are spawned
as well. An action modeller analyzes the controllable parameter, look-
ing for a correlation with a reward signal. If it discovers a reliable
correlation over some short time period (minutes), it creates a model,
and spawns an actor module for that model. Thereafter, it continues
to monitor the model and may refine it. One action modeller may cre-
ate and manage multiple models, since there may be multiple actions
involving a single controllable parameter.

An actor module (Figure 5.6) instantiates its action model: it carries
out the action described by the model. Actors are quiet until they are
activated by input to the activation inport A. As long as they are kept
activated, they will continue trying to achieve whatever action they
perform, sending a drive signal out to some controller. Actor modules
also have internal random activation. When first created, an actor
will activate itself spontaneously. This allows the robot to manifest
whatever behavior it has just learned so that the behavior may be
linked to a stimulus (via a trigger, Section 5.3.4).

The rate of the random activation drops off over time, and eventu-
ally an actor will only activate in response to an explicit external signal.
If, after some length of time, an actor has not received any external
activation, then the actor exits and its action model is discarded. One
can consider an action model to be a hypothesis of sorts, claiming that
a particular controller activity leads to utile, rewarding behavior. If
it turns out that nothing ever triggers that action, then pamet decides
that the hypothesis is fal and the action is "forgotten".

Action models can also evolve over time. When a new action model
is first devised by a modeller, it is compared to all the pre-existing
models which the modeller is managing. If the new model is similar

92

v .ý actor A
controller q4

7model

A

Figure 5.6: Two types of actor modules. (A) The position-constant
actor has a model which specifies a prototype goal position g0 for a
state parameter W. When activated via messages to inport A, the actor
sends velocity commands VT to a controller, to drive " to the goal. (B)
The position-parameter actor has similar behavior, except that the goal
position g0 is read from another state parameter instead of being a
constant.

93

enough to an old model, then the old model is refined by blending in
the new model. No new actor is spawned (and the new model is never
registered), but the actor corresponding to the old model is notified of
the update. This mechanism allows actions to be continually shaped
by a trainer over time.

The action models themselves are explored in Section 6.2.

5.3.4 Triggers

An actor is able to make the robot do some simple thing, but it does
not know when to do it. By itself, an actor acts at random. A trigger
module bridges the gap between cause and effect by explicitly activating
an actor in response to a stimulus. For each trigger, the stimulus is
described by a trigger model, and these models are themselves created
by trigger modellers.

Trigger models link state to action: they describe a context, and an
action (literally an actor module) which should be activated when the
context is satisfied. Classes of models are distinguished by what type
of context they describe. One type of model has been implemented in
pamet, the position trigger, in which the triggering context is tied to the
value of a state parameter (Figure 5.7): the trigger is activated when
the parameter is close to some prototypical value. Another useful model
envisioned is an activation-delay trigger, which triggers an action after
a delay in response to another activation signal in the system. This
would allow actions to be chained together into seuences.

Trigger modellers are created by proto-trigger-modeller modules.
Whenever a new actor appears in sok space, the prototype module cre-
ate.s a new modeller for every. possible stimulus for that actor. Each
modeller has inports for monitoring a state vector " (the potential stim-
ulus), the activation level A of the actor, and a reward signal R. The
basic operation of the modeller is to look for a correlation between the
action, the state vector, and the reward; the modeller is trying to deter-
mine if the action is consistently rewarded when associated with some
stimulus. How this happens is explained in Section 6.3.

Note that the trigger modeller has no idea what the actor is actually
doing. The modeller only sees whether or not the actor is activated.
The internal random activation of the actor insures that it will be oc-
casionally active, at least at the outset.

If the modeller does discover a reliable correlation between action,
stimulus, and reward, then it will register a trigger model and spawn a
trigger module. The trigger connects itself to the stimulus' state vector
and the actor's activation inport. The trigger will activate the actor

94

A trigger
actor

/ model ',

A

Acor ---trigger A

/" model '•
'i,A , A;i

B

Figure 5.7: Two trigger modules. (A) The position trigger outputs an
activation signal A when the input state parameter 9 is close enough to
a prototype go. (B) The proposed activation-delay trigger is activated
at some time delay 7- after an input activation A > Ami.,.

95

whenever (and for as long as) the trigger's context is satisfied. The
modeller continues to monitor the action, sthnulus, and reward, and
may later refine the model, modifying the context.

The activation output of the trigger does more than just activate an
actor. The value of that output is the probability that the its context
is satisfied by the current state vector Alt). This probability is a useful
parameter in its own right: it is an evaluation of some state which
is deemed relevant to the robot. A trigger's activation output is thus
considered a state parameter which may be used as input to other
triggers. (The actor itself does not pay attention to the value, just to
whether or not any message is being sent at all.)

Like an actor, a trigger is best considered to be a hypothesis that
a particular stimulus should trigger an action. However, there is cur-
rently no mechanism for deciding if the hypothesis is no longer true and
retiring a trigger. This issue will be further discussed in Section 6.3.

5.3.5 Transformers

Suppose that two state parameters, Y and #, describe the same process,
but with different, coordinate systems. They are two different views of
the same phenomenon. Then, there should be a coordinate transfor-
mation f which maps Y onto g7. The basis of a transform model is to
learn such a transformation between two state variables, if it exists.
A trans/ormer module can then use that model to provide new state
variables, classification, and control.

The motivating example behind the transform model is the task of
looking at the hand. With respect to Cog's shoulders, the position of
its hand is determined by the state parameter W, the vector of the six
joint angles in the arm. Recall from Chapter 4 that the target of the
vision system is given as I = (0, 0, d), the pan, tilt, and distance in a
shoulder-centered global-coordinate frame. If the eyes are focused on
the hand, then ;; also tells us the position of the hand, simply in a
different coordinate system.

Of course, the hand position can also be described by F = (x, y, z),
the 3-d cartesian coordinates. This could be considered the most fun-
damental description, since it specifies where the hand is in "real space",
and the I and) descriptions can be derived from F" and knowledge of
the head and arm kinematics. However, real space F isn't of any im-
mediate consequence to the robot, whereas j and W are. W is required
for any motor activity which involves moving the hand around, and I
is needed for any sensory activity which involves looking at something.

Whenever Cog is looking at its own hand, 9 and - relay the same

96

controler trnsore actor
Smodelý "• y Sý

Figure 5.8: General form of a transformer module. The module con-
tains a model which describes how the view of a process in one param-
eter space (. space) maps into another (Y space). The transform of the
input Y is continuously estimated and output as gx = f(Y). The input
W is used with Y to continuously assess the probability Ax, that the
two inputs are indeed tracking the same process. Since the model can
perform the inverse transform on gj velocities, the module can also act
as a controller. When it receives a velocity drive signal at input ffY., it
transforms that into a drive signal Y which it forwards to the controller
for Y.

information: the position of the hand. The two vectors are related by
a function f: I - • which maps from one coordinate system to the
other. This function is the key to using the hand in conjunction with
the eyes together.

This f turns out to be a very useful function: it can tell Cog three
different things. First, given some random arm configuration 0, f(W)
will tell Cog where to direct its gaze in order to look at the hand
(if, for instance, Cog forgets what it is holding). Second, if Cog is
intently looking at some object with gaze angle 1, then f-a(,Y) will
tell Cog where to move its arm in order to reach out and touch the
object. Finally, if Cog's current arm position and gaze angle satisfy the
relationship Y = f(0), then Cog knows that the target it is looking at
is its hand.

Figure 5.8 illustrates a generic transformer module. It has inports
for the current values of two state parameters Y and #. To act as a
transform, it has an outport for the computed/predicted state vector
ff# = f(Y). As a classifier, it has an outport A., for the probability
that Y and W are observing the same process (e.g. the position of the
hand). Finally, as a controller, it has a velocity inport Y:' and outport
X. If Y is a controllable parameter, then the latter port is connected to
the X controller. ffW will then act as a controller for Y, in terms of its
transform gx.

97

The details of how transform models are trained and used are dis-
cussed in Section 6.4.

5.4 Other Modules and Facilities

The dynamic modules discussed in the previous sections operate by
connecting to parameters provided by a static foundation of hard-wired
modules. meso and the visual and tactile senses comprise the bulk of
that base. layer. Two other static subsystems which have been alluded
to but not yet described are the age mechanism and the emotional
system.

5.4.1 Age

Most processes in pamet are time-dependent, but the dependency op-
erates at two different scales. Control processes operate at the millisec-
ond level. Developmental processes operate over minutes and hours,
perhaps even days. Two different timebases are used in pamet to ac-
commodate this.

The short-term timebase is the CPU clock, which is utilized for all
real-time tasks. This includes sending activation signals and command
streams, and sampling data - events which occur at frequent regular
intervals. A precise timebase is necessary, for example, for accurately
calculating velocities from state data: any jitter in the timebase adds
noise to the measurement. All such code is implemented using the real-
time timer facilities built into the QNX operating system, which provide
microsecond resolution (as long as a processor is not overloaded). There
is no synchronization between processes at. these timescales, even on the
same processor; each process essentially has its own local clock.

The long-term timebase is provided by a module called age. This is
a sok-process with an outport which, once per second, broadcasts the
"age" of the robot in days. This provides the system with a common
global timebase for coordinating developmental events. These events
themselves fall into two categories: absolute and relative.

Absolute events are keyed to the absolute age. Many prototype
modules, such as the proto-controller, stay in hibernation until a cer-
tain developmental age is reached. These modules cannot function
successfully until other structures in the system, such as the mover
models, have stabilized, so this allows them to be hard-coded to wait
for an appropriate length of time. Relative events are just keyed to a
change in the age, usually relative to whenever a module was created.

98

The decay of random activation and the expiration of unused actors
fall into this category. The "clock starts ticking" whenever an actor is
created; the actor is given a deadline in robot minutes to prove itself
useful, after which it is destroyed.

The age module has a few controls attached to it: time intervals can
be added or subtracted from the age at the click of a button, and the
aging rate (robot seconds vs. real-time seconds) can be varied from the
default of 1.0. This freedom eases debugging of and experimentation
with developmental events, and was the primary reason for decoupling
the robot age from the local CPU clocks.

5.4.2 Emotion

The reward signals involved in training actors and triggers are provided
by an extremely simple emotional system. The job of this system is
merely to act as a clearinghouse for reinforcement in the robot. The
emotional system is composed of two modules, emo/happy and emo/sad,
which process positive and negative signals, respectively. Both mod-
ules have the same basic structure (Figure 5.9), and differ only in how
their inports and outports are routed. Each module acts like a leaky
integrator. The output R is a rumning sum of each input message s
which is received, but R also decays by a factor of A at each time step.
The output value reflects the total rate of the input, averaged over a
period of roughly the length of the time constant. The modules run at
40 Hz; A is typically set to yield a time constant of two seconds, which
equates to a fairly short "attention span" for reward.

The sources of raw reward are the primal motivators for the system,
the hard-wired measures of what is good and bad to the robot. The sole
source of positive reward is the tactile sense: when the robot's hand
touches something or receives a squeeze, that increases its happy state.
Negative reward is derived from meso's joint-limit pain and muscle
fatigue discomfort. Cog's sad state will increase if someone literally
twists its arm behind its back.

Although it is satisfactory for the tasks implemented so far, this
emotional model acts as little more than a global variable. pamet will
eventually need a mechanism for expecting and accounting for reward
(i.e. credit assignment). As more and more modules such as actors
and triggers inhabit the system, each will expect reward for its own
niche of state-space, and those niches will begin to overlap. Without
a careful accounting for the reward, it may become impossible to tell
if the reward is meant for an existing model or if it is marking a new
experience. This system also needs more primal motivators - such

99

Se-mo/happy

8 emo/sad

Figure 5.9: The basic emotional system employed by pamet consists
of two modules, one for positive rewards and one for negative. Each
acts as a leaky integrator which sums its input messages and produces
an output which reflects the rate of reward input. The only source of
positive reward is the tactile sense (any touch is good touch). Negative
reward is derived from joint limit pain and muscle fatigue discomfort.

100

as simple facial expression or vocal prosody recognition, or even more
abstract sources, such as senses of satisfaction and frustration (positive
and negative reward sources) for models whose predictions are fulfilled
or unfulfilled. An emotional system with states tied to gestural reflexes,
such as the one found in Kismet [7], would give much needed natural
feedback to people who interact with the system.

101

102

Chapter 6

Models and Modellers

This chapter details the implementation of the models and modellers
introduced in the previous chapter. Recall that every module in pamet
which produces some activity does so in accordance with some kind of
model, generated dynamically by a modeller module. A modeller may
update one of its models over time. It may also discard a model and
destroy any other modules which were using it.

Most of the models are, ultimately, binary classifiers. Given a par-
ticular set of input signals, they attempt to sort samples into one of two
classes -- e.g. "rewarded" vs. "unrewarded", or "correlated" vs. "noise".
The models differ in how the distributions of each class axe modeled
and which features of the distributions are put to use. In these terms,
the primary job of a modeller is to decide if a reliable classifier exists
for the data it sees, i.e. if there are two classes.

This chapter discusses the models and modellers in fairly generic
terms. Many modellers have tunable parameters. The timing of the
parameters, and the successes and failures of the models, are explored
along with the behaviors that this system produced, in Chapter 7.

6.1 Mover Models

A mover module is expected to produce a velocity in a state parameter
W• in proportion to the module's activation input A. By definition, then,
a mover model is a linear model of the velocity 8 as function of A which
takes the simple form

A= Am.

103

A mover may not affect all of the components of a state vector, so the
model also includes a mask which specifies which axes of " are relevant.

Mover models are learned by mover modellers. For any given pairing
of state W and mover activation A, a modeller needs to determine which
axes of 9 are affected, if any, and what constants are involved. It does
this by linear regression.

The modeller collects (9i, A4) sample pairs over a number of episodes
of mover activity. A mover only transmits activation data when it is
active, so there is no (9', A) data when the mover is inactive. The "
samples are preprocessed episode-by-episode: each time-series is low-
pass filtered, and sample-to-sample differencing is used to determine
the velocity V. A block of samples at the beginning and end of each
episode - the tails of the filtering step - are discarded. Finally, the
(if,, A,) pairs from all episodes are batched together and subjected to
linear regression.

For each axis k, rnk is estimated by

Mk = VkjA"

The correlation coefficients Rk, and their maximum, are also computed:

Rk - (Z2 vka R =amax(Rk).

A model is only created if Pa, is greater than a threshold Rth,. If
not, then the modeller decides that no component of the state vector is
reliably linearly affected by the mover. If the threshold test does pass,
then the axes for which Rk > ARm,, are chosen as the relevant axes
(and the appropriate bits in the mask are set).

The result of this analysis is a model consisting of a vector f1 and
a bit mask over the components of f. rii is an estimate of the velocity
of " induced by the mover when it receives a unit activation A = 1.0.

6.2 Action Models

As discussed in Section 5.3.3, the purpose of an actor is to twist a knob.
An actor relies on an action model to tell it which knob to twist and
how to twist it. Two types of action models have been implemented:
position-constant and position-parameter.

104

[3oioe] modeller ?

A

controller rmodeller

Sc

B

Figure 6.1: Two types of action modellers. (A) The position-constant
modeller tries to determine which prototypical values of a controllable
state parameter , are associated with reward R. (B) The position-
parameter modeller tries to determine if reward occurs when control-
lable state parameter 9, is equal to or tracking a goal state parameter

Position-Constant Action

The gist of a position-constant action is "drive the controllable pararn-
eter to a specific constant value". The job of the action modeller is
to discover constant positions that correspond to useful goals. The
position-constant action model is essentially a binary classifier, which
decides when a state parameter is rewarded (useful) or non-rewarded.

Figure 6.1(A) illustrates a position-constant modeller. It has two
inputs: the (controllable) state parameter 9 and a reward signal R.
The modeller tries to correlate the reward signal with the state vec-
tor data stream to discover values that are consistently rewarded. It
records pairs of samples (., R) and analyzes the data in short batches
(corresponding to around two minutes of real time). The first step of
this analysis is to condition the reward levels by detrending, smooth-
ing, differentiating, and then thresholding. This produces a series of
pulses, where the onset of each pulse corresponds to a "reward event"
- a moment when the robot was rewarded. Each state vector sample

105

\

2.5

2 ~I

1.5

1 raw reward
state parameter

0.5

0
0 500 1000 1500 2000 2500

Figure 6.2: An example of position-constant-action data analysis. The
raw reward is smoothed and thresholded to decide on a precise moment
when reward occurred so that reward windows preceding the reward
can be constructed. The distribution of state parameter samples oc-
curring during reward windows ("rewarded") will be compared to the
distribution of all the rest ("unrewarded").

9 is then classified as "T" (rewarded) or "F" (not rewarded) according
to the criterion of whether or not it falls into a fixed window of time
preceding each reward event.

A basic assumption made here is that the reward immediately fol-
lows the desired action. The state vector values immediately preceding
the reward are the ones which elicit. it. Figure 6.2 illustrates part of a
dataset from learning a simple "point-the-finger" action.

The next step is to decide if there is actually anything to be mod-
elled. It may be the case that the reward R which the modeller sees
is meant for some action involving some other state variable. If the
distribution of T samples is significantly different from the distribution
of F samples, then we conclude that the T samples are indeed being
rewarded. If the T sample and F sample distributions are essentially
the same, then we conclude that the reward is not, in fact, correlated
with our state vector (not during this training session, at least), and

106

0.6

0.2

Rewarded ------
Backgfround-

0
1.6 1.8 2 2.2 2,4 2.6 2.8 3

Figure 6.3: Comparison of CDF's to discover active axes. The re-
warded and unrewarded sample distributions from the sample dataset
are significantly different, both to the eye and by a measure of absolute
area.

we toss out the data and start over again.
The distributions are compared by measuring the absolute area a

between their cumulative distribution functions (CDF) P(s IT) and
P(si[F), where

a= J IP(s4 T) - P(s4IF)I dsi

normalized over the range of s,. If a > A = 0.1, the T and F distribu-
tions are determined to be significantly different (Figure 6.3). This test
is similar to the Kolnogorov-Smirnov (K-S) test [20], which measures

D = max IP(siIT) - P(s4IF)1,

but the K-S test is less sensitive to differences in variance.
Both tests are only applicable to 1-D distributions, thus this test is

applied to each component of the state vector independently. This is
necessary anyway, since not every component of 9 is necessarily germane
to the action. For example, if the state vector is the complete vector of
joint angles of the robot, perhaps only the position of the elbow is being

107

rewarded. The results of each test are combined to form the active mask
for the state vector; each axis which demonstrates a difference between
T and F distributions has its mask bit set. If no bits are set in the
mask, then none of the state vector is correlated with the reward data
and no model is created.

If at least one axis can claim rewarded samples, then a position-
constant action model is created, consisting itself of models of the T
and F distributions. These models are simply multivariate Gaussians.
Each model is just the mean and variance of the set of active (masked)
components of the class's state vector samples. Assuming the distribu-
tions are actually near-Gaussian, the T mean is the state vector with
the maximum-likelihood for receiving reward.

Whenever a new model is created, it is compared to all existing
models (for the same s-. If the new model is similar to an existing
model, then the same action is probably being rewarded and reinforced
again, and the old model should be refined instead of duplicated.

Models are compared by their p(slT) distributions. If the means are
within 1.5 standard deviations (taken from the variances), then they
are considered similar. In that case the models are merged by averag-
ing their parameters (the means and variances), and the old model is
updated with the new values. If the new model is not similar to any
existing ones, then it is registered and a new actor is spawned.1

Posit ion-Parameter Action

The gist of a position-parameter action is "drive the controllable param-
eter to match another state value". The modeller for such an action
(Figure 6.1(B)) has two state inputs instead of one: the controllable
parameter §c and the target parameter 4g.

The entire discussion of position-constant models applies equally
to position-parameter models, except that the controllable state g is
replaced by the difference F" = , - W. Whereas the position-constant
model contains the reward-relative distributions p(sIT) and p(s9F), the
position-parameter model consists of p(eT) and p(elF). The modeller
records batches of samples (,c, 4, R), which are processed into streams
of (e, R). The same distribution comparison algorithms are applied
to determine if there is a significant difference between rewarded and
non-rewarded ý values.

The model is sensitive to the condition that ;, tracks W. with a
constant offset. If that offset is zero, then 9, is exactly following Wg, but

I If the new model is similar to two old ones, only the closest one is currently

merged. There is no mechanism for condensing existing models.

108

actor modeller

Figure 6.4: A position-trigger modeller tries to find an association be-
tween a state parameter 9, an actor's activation A, and reward R. The
goal is to determine a region of the space of 9 (a context) which leads
to the actor being activated (triggering the execution of an action).

that is not a critical condition for the basic behavior. When the model
is instantiated by an activated actor, the actor continuously drives s9,
to the goal position (9* + •), where 6 is the mean encoded in p(eT).

6.3 Trigger Models

A trigger module activates an action in response to some stimulus, and
that stimulus is defined by a trigger model Only one type of model
(and thus one type of stimulus) has been implemented so far, and that
is the position-trigger model.

Trigger modellers are created by proto-trigger-modeller modules.
Whenever a new actor appears in sok space, the prototype module cre-
ates a new modeller for every possible stimulus for that actor. Each
modeller has inports for monitoring a state vector " (the potential stim-
ulus), the activation level A of the actor, and a reward signal R. Fig-
ure 6.4 illustrates an example of a trigger modeller observing an actor
and a vector of visual features. The basic operation of the modeller
is to look for a correlation between the action, the state vector, and
the reward; the modeller is trying to determine if the action, when
associated with some stimulus, is consistently rewarded.

Position-Trigger Model

Position-trigger models are sensitive to state parameters, which can be.
either sensory or motor parameters (or anything in between). They
can define a context related to a sensory stimulus, such as "looking at a
red object" (i.e. high 'redness' reported by the visual features module).
Or, the context can refer to a particular motor configuration, such as
"an outstretched arm".

The position-trigger model can be viewed as a binary classifier where

109

the two classes are stimulus and non-stimulus. As with the action mod-
els, it's convenient to label the classes "T" and "F" respectively. It is con-
venient to think of the non-stimulus distribution as the "background"
distribution.

Each class is modelled by a distribution p(s]C). The context rep-
resented by the model is considered satisfied when the input state W is
classified as stimulus. The criterion for this is:

(lg(p(s1T)P(T) >log P(TI] = log (>)()
P(F~sJ p(sJF)P(F)

where A is a threshold typically set to zero.
Within this basic framework, the distributions p(sC) could be mod-

elled in any number of ways. Following the frugal example set by action
models, here they are modelled as unimodal, multivariate Gaussian
distributions. This is sufficient to capture the concept of a stimulus
consisting of a single prototypical parameter value.

Position-Trigger Modeller

The modeller operates by collecting and analyzing batches of sample
triplets (9, A, R), where W is a state parameter vector, A is the activation
status of an actor, and R is a reward signal. The basic operation loop
is:

1. Collect and preprocess a batch of data.

2. Try to extract a position-trigger model from the data.

3. If no useful model is discovered, goto 1 and try again.

4. Compare the new model to existing models. If the new model is
similar to an existing one, refine the existing one; goto 1.

5. Register the new model; spawn a trigger; goto 1.

The data is first preprocessed by low-pass filtering . and filtering R to
produce a series of pulses signifying reward events. Figure 6.5 gives an
example of raw and preprocessed data.

The next step in creating a model is to classify the , samples as T
(stimulus) or F (background). The basic assumption is that a trainer
is going to reward the robot when it performs an action in response to
a stimulus. Thus, the stimulus should be represented by those samples
which occurred in conjunction with both the action and the reward.
However, it is possible that the recorded rewards pertain to something

110

4

rwa d events-

35f

2:

2

~~ K

0,5

0

0 500 1000 1500 200 2500 3000 3600 400

Figure 6.5: A sample of a position-trigger training data set. The two
components of state parameter 9 are target features from the vision
system (skin tone and redness). A is the activation of a "reaching"
actor; R is the reward signal (derived from tactile reinforcement). The
R signal is processed to yield discrete reward events.

111

else; perhaps the action which is being rewarded is not the action which
the modeller is observing. Likewise, it is possible that the actual stim-
ulus involves only a few of the components of the state parameter, or a
different state parameter altogether. The modeller will need to be able
to distinguish these cases.

What does it mean for a particular sample 9 to occur "in conjunc-
tion" with an action and reward? The onset or endpoint of the action
will not necessarily coincide with the reward, and certainly the single
state sample that is recorded simultaneously with either of these events
is of little statistical value. What we really want is the window of sam-
ples which encompasses the stimulus. This will give us a sample set
over which we can estimate a distribution. A couple of different ways
of determining such windows were implemented.

Action-Onset Basis

The first teclmique makes the following assumptions about the training
process: One, the stimulus will be presented near the beginning of
the action, and the action will probably take some length of time to
complete (e.g. to move the arm to some position). Two, the reward
will be delivered near the end of the action. The stimulus windows
determined under these assumptions are action-onset based.

We find likely windows in two steps. The intervals during which
the action is activated are the primary timebase. Let us sequentially
label each such active interval as ao, a1, ..a, .. , and the onset and ending
times of those intervals by tio and til, respectively.

First, over the entire dataset, we find the action windows, the sam-
ples which are to be associated with initiating the action. This is the
set Sa of samples which fall in a window of length ra which begins at
offset 70a before an action onset. (The length and offset are tunable
parameters.) In other words:

S. = {It) I (tio + Tao) < t < (ti0 + amo + Ta), for some a2}

The action windows for our example data set are illustrated in Fig-
ure 6.6.

Next, we find the reward windows Sr, the samples to be associated
with receiving reward. This is a bit more complicated. First, we need
to decide whether or not each reward is associated with an action. For
a reward to be associated with an action, it should closely follow the
action. So, we use the criterion that a reward event occurring at time
t is associated with action ai if

(ti + Tro) < t < (ti + r,.o + rT)

112

2.5 1
rewa d events ------

Action iwndows
2

ward Nindows

0.5

0.5 I

0 500 1000 1500 2o00 2500 3000 3500 4M00

Figure 6.6: Action and reward windows for the example dataset. The
action windows are Is in duration and follow the onset by 2s. The
reward windows apply only to those actions which have a reward which
occurs within 2s of completion.

where ro and r-, define the offset and length of the interval of associa-
tion. A reward event is associated with the closest action which satisfies
that criterion, and if no action satisfies the criterion, the reward event
is considered a spurious event. If a reward event is associated with an
action, then we say that action has been rewarded. We also calculate
tavg, the mean delay from action onset to reward.

The reward windows S, are going to be all the 9 samples which
fit the action window criterion, whether there was an action or not.
Concisely,

,)(t) I (tio + Trh) < t < (tio + TO + r,), for some rewarded a,
Sr 80t) I (t, - tatig + Tao) < t < (tr - tavg + Tao + 7a),

for spurious events at t.

The first term is all reward-worthy samples, for actions which received
reward. The second term is an estimate of reward-worthy samples for
rewards which had no corresponding action. The intersection S0 n S,
is the set of all samples 9 which occurred in conjunction with both an
action and a reward.

If St. n Sr is non-empty, then at least one invocation of the action
appears to be coincident with a reward. It is possible, however, that the
reward was intended for different action or a different state parameter,
or both. If the distribution of S, is the same as that of -S, then the
context for the trigger does not involve W because the rewarded samples
look the same as the unrewarded samples. Likewise, if the distribution
of S, n S • is the same as -_(S, n So), then the trigger does not pertain
to the given action.

113

//

Figure 6.7: Cumulative distribution functions (CDF's) of the stimulus
samples (S, n S,) and background samples _(S, n S.), as classified
by the reward windows in Figure 6.6. CDF's are computed indepen-
dently for each component of the sample vector, and the absolute area
is measured. The difference is significant for the second component but
not the first. Hence, only the second component would be used in the
stimulus.

The two sets of distributions are compared using the same CDF
measure used for the action models (Section 6.2). As before, the com-
parison of distributions is performed independently on each component
of g in order to decide which ones, if any, are actually part of the
stimulus. Figure 6.7 illustrates the CDF's for the sample data set.

Sliding Windows

Note that this algorithm depends on a few important parameters: the
lengths and lags of the windows used for actions and for reward associ-
ation. These numbers must reflect the interaction between the trainer
and the robot. The reward association window (-ro, T•r) is fairly forgiv-
ing. A typical working value is (0. 2). That is, any reward occurring
within the two seconds immediately following an action is considered
a reward for that action. The action window (r0o, r) is more criti-
cal. The offset describes when the stimulus is expected to happen with
respect to the action and will vary depending on the nature of each.
The ideal offset also depends on the reaction time of the trainer: the
trainer will be applying the stimulus when the robot spontaneously
performs the action, to make the robot associate the two. The length
of the window is crucial as well. Ideally, it would match the length of
the stimulus so as to yield the most accurate statistics. If too long,
non-stimulus background samples will get mixed into the model. If too
short, the window may provide poor statistics or even completely miss

114

the stimulus, depending on how precisely the offset is known.
In practice, a fixed-length action window -r of one second seems

to work. However, the lag 7.o needs to be tuned. The solution is to
compare the CDF's of S, and S. computed using several different lag
values, effectively sliding the action windows around until the optimal
value is discovered. (The optimum is the the value which produce-s the
largest above-threshold difference measure, summed over all axes.) The
lag is varied in increments of one-half the window length, over a range
of typically one to three seconds.

Distributions

After all this busywork to calculate an appropriate ST = (SR n SA)
and SF = _(SR n SA), the rest of the model is simple: just calculate
the means and variances of each set to yield unimodal Gaussian models
p(sIT) and p(.4F). The a priori probabilities of each class are

P(T) = ISTI P(F) - SF1
N' N

where N is the total number of samples in the data set. Note that
the preceding discussion is independent of how the distributions of ST
and its complement are modelled. The only assumption is that, the
distributions are separable, and this arises when the distributions are
compared.

The Gaussian model is used because it is very, very simple and gets
the job done. It expresses the concept of a single prototype parameter
value (the mean) which is the ideal stimulus. This makes the instanti-
ation of the model by a trigger module straightforward.

Again, as with action models, once a new model is created from
a batch of samples, the trigger modeller compares it with any other
models which it has already created. It may be the case that the robot
is still (or again) being trained to do the same thing as in an earlier
session. If so, instead of registering a duplicate new model, the older
model should be refined.

Two models are compared by examining the means of their stimulus
distributions. If the means are within 1.5 standard deviations of each
other (derived from the mean of the variances), then the models are
considered to represent the same stimulus. The new model is merged
into the old model by averaging the means and variances together.
Then the trigger assigned to the old model is notified that its model
has been updated.

115

Position Trigger

The position-trigger module introduced in Section 5.3.4 instantiates the
model. A trigger has an inport for the stimulus state parameter and an
outport connected to an actor's activation input. When the stimulus
input matches the stimulus in its model (and as long as it does), the
trigger activates the actor, which in turn causes the robot to perform
some action.

As mentioned earlier, the stimulus context is satisfied for an input
W when

P PT, log, p(.IT)P(T) >p = log p(F =og

The activation level output by the trigger is P(Ts); the message is
only sent when p > A. This value does not directly affect the actor -
as long as tile actor receives a message, it activates - however, it may
also be used as state parameter, to trigger other actions.

Note that the trigger criterion depends on a comparison of the dis-
tribution p(sJT) for the desired stimulus signal with the distribution
p(s.F) of the non-stimulus, or "background", signal. How these two
relate changes the region of the parameter space which constitutes the
stimulus (Figure 6.8). Since the two distributions are modelled as Gaus-
sians, each class will be a single connected region in the space, and the
decision boundary will be a (hyper)conic section.

The trigger module updates the background distribution over time.
The p(.5F) distribution created by the modeller reflects the statistics
of the state parameter when the model was trained. However, this is
not necessarily a stationary process. As the robot moves about, and
as the robot begins doing new or different things, the background dis-
tribution will probably change. (Imagine the visual impact of different
tour groups coming to visit the robot, with each group wearing a dif-
ferent color t-shirt so that its members don't get lost.) The trigger uses
p(sJF) supplied by the trigger-modeller as a seed when it starts up, but
modifies it over time as it takes in new state parameter samples.

The trigger updates the background distribution by averaging in
each new sample, weighted to yield a half-life of 300 seconds. Thus, the
background distribution eventually reflects the mean and variance of
the entire signal (over the last 10 minutes or so). This seems statistically
inappropriate, since it conflates the stimulus and non-stimulus samples,
but it works just fine. The rationale is that stimulus events should
generally be rare (P(T) < P(F)), so including the stimulus samples in
the calculation of the background should not significantly affect it. If for
some reason the stimulus becomes so very frequent that the background

116

AIF

T<aFU<p

00

a22

Figure 6.8: Possible partitions of a 2-D parameter space by a Gaussian
binary classifier. The shaded region corresponds to the "stimulus". The
shape of the decision boundary is a conic section determined by the
variances F and ai of each class. The "stimulus" may be confined to
a closed region, or it may be everything but a closed region.

117

distribution begins to look like the stimulus, then the trigger criterion
will become more difficult to satisfy. In effect, the trigger will habituate
to the stimulus, and this is actually a desirable behavior.

6.4 Transform Models

A transform model describes a situation in which two state parameters
are different views of the same underlying process. As discussed in the
previous chapter, the motivating example is the case when the eyes are
tracking the hand. Since the gaze angle of the vision system is locked
onto the position of the hand, the gaze angles and the arm's joint angles
become causally related, and in particular that relation is a coordinate
transformation. Of course, the eyes are not always fixated on the hand.
The transform model must not only learn the transformation function;
it must also be able to discern when it is applicable.

Generic Transform Model

A transform model in pamet is another type of binary classifier. It is
defined on a pair of state parameters Y and ff by a pair of distributions
over the two classes, p(;f,y-T) and p(Y,y-F). The first distribution
is the tracking distribution; it describes the statistics of (y, y when
the two parameters describe the same phenomenon - - e.g. when the
eyes are targeting the hand. The second distribution is the background
distribution, which describes the other case -- e.g. when the eyes are
looking at anything but the hand.

For the non-tracking, background case, it is assumed that X and f
are independent. Then,

p(Y, ylF) = p(XJF)p(y1 F)

and those two component distributions are simply modelled as multi-
variate Gaussians.

For the tracking case, Y and W are decidedly dependent (that is
the whole point of this exercise), and that dependency is described by
a transform function f. Let's assume a Gaussian noise source in the
measurement of #, then when W' is tracking i,

and
p(yli, T) = g(f(Y), o),

118

where g(p, o"2) is a Gaussian distribution with mean p and variance a 2,
and a2 is the variance of the noise source. This gives us

p(l, y-T) = g(f(Y), ao)p(iIT)

as the tracking distribution.
The transform function f needs to be learned. This is a prob-

lem of function approximation, and there are no good general answers.
Two techniques were used in this thesis. The first is a non-parametric
memory-based technique with a smoothness constraint. The second
is a semi-parametric model for a true coordinate transformation. The
former is quicker (trivial) to train than the latter, but the latter is sig-
nificantly faster than the former for producing estimates. These models
are discussed further in Appendix B.

Transform Model as Predictor, Classifier, and Controller

A transform model can serve three different purposes. Most trivially,
it can serve as a predictor of the "y-space position" of 1, by evaluating
the transform function, gir = f(l). In the eye-arm case, this function
predicts "where the eyes need to look, in order to look at the hand",
given the current joint angles of the arm. The model could also do the
converse, predicting "where the arm needs to move, so that the eyes
focus on it", given the current gaze angle. This would also be useful,
but not so trivial, since it requires solving # = f(Y) for Y, when f is
not necessarily invertible. Fortunately, the structure of pamet obviates
a direct need for this.

The second use of a transform model is as a classifier, to estimate
the probability -y that process W is tracking process X. In practical
terms, it can answer the question "Are the eyes looking at the arm?"
This estimate is a direct. result of the distributions in the model:

,y = P(TJ, y-) =p(F, ffT)P(T)
- p(Y, y-T)P(T) + p(Y, y-F)P(F)

The third use is as a controller. Recall that in pamet, a controller
(Section 5.3.2) is a module that can drive a particular state parameter
according to an input velocity. If 1 is a controllable state parameter,
then a transform model can specify how to drive Y, given a velocity
y, expressed in the "y-space". For example, this would allow the arms
to be. moved around in the gaze space of the robot, i.e. the robot
could move the hand to whatever it happened to be looking at. This is
possible because a controller only needs to convert a velocity from one
space to the another, and that amounts to solving the linear equation

119

y.1 = F((o) .

for xi where F(Yo) is the Jacobian of f evaluated at the current position
of the system Yo. Even if f is not invertible (and thus F is not an in-
vertible matrix), this can be solved using singular value decomposition
(SVD) [43, 47]. The particular solution provided by SVD minimizes
the norm 1Ifl-. In general, that is precisely the solution we want: it is
the solution which achieves the goal velocity with minimal extraneous
movement.

This controller method is essentially the same process as using the
Newton-Raphson method to iteratively solve W = f(S) for Y, by step-by-
step moving Y along the gradient which minimizes (g - f(Z)). Instead
of just repeating the calculation until it converges to a solution for Y,
however, the Z state is physically changed at every step (e.g. the robot
arm actually moves a bit). This method will fail as a controller in the
same ways it can fail as a root solver. The fact that Y is physically
manifested can be helpful, though. For example, slew limits and the
natural wobbliness of the arm help keep it from zooming off to infinity
or getting caught in a cycle.

Transform Modeller

Transform models are created by a transform modeller module, which,
as one might expect by now, is itself spawned by a proto-transform-
modeller. One transform modeller is created for every pair of state
parameters. Like all other modeller modules, the basic order of opera-
tions of the transform modeller is the following:

1. Collect a set of (Y, y- samples.

2. If a model already exists, update the model using the new data.

3. If no model already exists, analyze the data to try to create a
valid transform model.

4. If a new model is created, register it and spawn a transformer to
put it to work.

If each (Y, y- sample were already tagged as "tracking" or "background",
the analysis would be trivial. We could just calculate the mean and vari-
ance of the background samples to produce the background distribution
p(Y, y-F). Then we could train an approximator f on the tracking sam-
ples (straightforward supervised learning), and use its performance to

120

estimate a•, yielding p(4, yT). Unfortunately, the samples are not con-
veniently tagged. The transform model, acting as a classifier, could do
this tagging for us, but we don't have a transform model yet!

A way to wriggle out of this conundrum is to use the Expectation-
Maximization (EM) algorithm, applied to classifying the samples as
tagged or background. The basic idea is to iterate between these two
steps:

1. For each sample si = (xi, #,), use the current model to estimate
the probability -y that si is a tracking sample (versus a back-
ground sample). -y is also known as the responsibility coefficient.

2. Update the model. Recompute the tracking and backgroumd dis-
tributions, weighting each sample's contribution to each distribu-
tion by "-y and (1 - -yi) respectively.

EM is guaranteed to converge to something, but it's not guaranteed
to converge to the answer we're looking for. The main question here
is how well the tracking samples can be resolved from the background
noise of all the rest. The answer to that question rests in the nature of
the approximator used to learn f.

Unfortunately, of the two approximators which were implemented,
neither worked well enough in the sample task (learning the transform
between arm joint angles and hand visual position) to yield an accu-
rate "tracking" versus "background" classifier. With the available data
sources, this algorithm could not be made to converge properly. How-
ever, the semi-parametric approximator was far more robust in the
face of training data which contained many junk, non-tracking sam-
pies. Since its form is more constrained than the non-parametric model
(whose only constraint is smoothness), it did a better job of locking
on to samples that actually had a coordinate-transform relationship.
These efforts are further described in Section 7.4.

Refinement

The preceding discussion was mostly concerned with bootstrapping:
discovering a brand new model within a set of data. If a decent model
already exists, refining it via the addition of new data is a much simpler
process. We simply run one iteration of the EM algorithm:

1. Using the current model, compute the responsibility coefficients
yi for each sample. (If we expect a useful temporal continuity
constraint, { -y} can be filtered over time.)

121

2. Iteratively update the transform function f and the background
distribution, weighting each new sample with by its yi.

If the transform function uses an online update. rule, this sequence can
be applied online as well, as each sample is recorded. After a modeller
has created its transform model, it continues to collect data and to
refine the model.

122

Chapter 7

Learning Simple
Behaviors

This chapter documents how the system learns a progression of simple
behaviors through a combination of robotic self-exploration and human
training. The first behavior is just controlled movement, developing
controllers for the fingers and arm. This allows the robot to be taught
specific hand and arm gestures. The gestures can then be conditioned
to follow tactile or visual stimuli. The trainer can refine a gesture over
time, keeping it linked to the same stimulus. Once the arm is moving
around in the visual workspace, the robot will develop a controller for
actively moving in that workspace. The robot can then be taught to
reach to where it is looking. Finally, that reaching can be triggered by
a particular visual cue.

Figure 7.1 shows a schematic diagram of the system when it is first
started up. Only pamet modules are enumerated. Since the motor,
vision, and tactile subsystems are static, they are shown as monolithic
boxes. The contents of those boxes have already been described in
Figures 3.1 and 4.5.

7.1 Moving via Movers

The motor primitives, which link pamet to the virtual muscles, are the
mover modules (Section 5.3.1). Each mover is hard-coded to conmand
a subset of virtual muscles with a particular velocity vector, which
is scaled by the activation level of the mover. The system has two
independent sets of movers, one for the right arm and one for the hand,

123

7 /7

Figure 7.1: Schematic of the initial state of the system. Aside from
the static structures of the motor and sensory systems, sok space is
populated by only mover modules and the various proto-modellers.

124

Right Arm Movers
name ShA IlShB ShCI El[WrA WrB]

Sb+Sc- 0.0 2.0 -2.0 0.0 0.0 0.0
Sb+Sc+ 0.0 2.0 2.0 0.0 0.0 0.0

Sc+ 0.0 0.0 3.0 0.0 0.0 0.0
Sa+E+ 3.0 0.0 0.0 2.0 0.0 0.0
Sa+E- 3.0 0.0 0.0 -2.0 0.0 0.0
Sa+ 2.0 0.0 0.0 0.0 0.0 0.0

Sb+E+ 0.0 2.0 0.0 3.0 0.0 0.0
Sb+E- 0.0 2.0 0.0 -3.0 0.0 0.0

E+ 0.0 0.0 0.0 3.0 0.0 0.0
E+Wa+ 0.0 0.0 0.0 3.0 2.0 0.0

Wa+ 0.0 0.0 0.0 0.0 2.0 0.0
Wb+ 0.0 0.0 0.0 0.0 0.0 2.0

Wa+Wb+ 0.0 0.0 0.0 0.0 2.0 2.0

Right Hand Movers
[ame Tumbj Paddle
pinh -1.0 1.
point -1.0 -.

Table 7.1: The complete set of mover modules which connect pamet to
meso. For a given mover (row), each coefficient specifies the velocity of
the given muscle (column) when the mover has unit activation. Most
movers drive two muscles.

listed in Table 7.1. The movers are hand-crafted to reflect a repertoire of
basic two- or three-actuator motion combinations. They fully cover the
joint velocity space, just as a complete collection of single-joint vectors
would. However, when the robot is not executing learned actions (such
as in the early stages of its development, when it has none), all its
movement is derived from random activation of single movers. (Mutual
inhibition connections allow only one mover to be active at a time.)
Movers which encode multi-joint motor combinations produce more
life-like motion than those which only move a single joint.

When the system starts up, random activation of the mover mod-
ules causes the robot's arm and hand to begin moving, exploring the
workspace. Mover modellers are automatically created for each mover,
to determine which state parameters the movers are driving. The
movers directly control muscle velocity, and via the action of the mus-
cles this affects the joint velocity. The system has no a priori knowledge

125

-2

-2,5

4

-4.5

-5
0 200 400 600 800 1000

05

0 -- - - - - -

-0.5

------- - -. J

0 200 400 600 8OM 1000

Figure 7.2: Elbow and thumb joint angles 0 (top) and mover activation
A (bottom) versus time, recorded by the modeller for the elbow mover
(E+).

of this connection and must discover it.
Each mover modeller records and analyzes series of (9, A) samples,

where g is a state parameter and A is the activation of the associated
mover. Figure 7.2 shows a sample dataset of elbow and thumb joint
angles and elbow mover activation over a period of 200 seconds of ac-
tivity. The data was collected over a larger period of real-time; only the
intervals in which the elbow mover was activated are recorded, because
the mover has no activation A to record when it is inactive.

The modeller filters and differentiates each episode of mover activity
to yield the joint velocity over time (Figure 7.3). It then tries to fit a
linear model of W as a function of A (Figure 7.4). The fit is performed
by linear" regression independently on each component of W. Not every
component is necessarily affected by every mover. A mover controlling
finger muscles, for example, shouldn't have any impact on the joint
angles of the shoulder. The correlation coefficient R 2 of each fit is used
to decide whether or not a component is being controlled by the mover.
The velocity of a joint which is not controlled by the mover should
show less correlation with the activation value than joints which are

126

0.02

0.01

0

-0.01

-0.02

-0.03
0 100 200 300 400 500 800 700 800

0-0.5

-1 - --- - -

0 100 200 300 400 500 W00 700 800

Figure 7.3: Elbow and thumb joint velocities 6 (top) and mover activa-
tion A (bottom) versus time for the elbow mover modeller. Velocities
are estimated by smoothing and differencing the joint angle data.

controlled. The disparity is enhanced because typically other movers
are randomly moving the uncontrolled joint.

For any joint to be considered affected by a mover, its R 2 must
surpass 0.4. Furthermore, if the maximum coefficient over all the joints
is R2•,•,, then R? must be greater than (0.2)RL, for joint j to be
considered. This local threshold allows the decision of choosing one
joint over another to be relative to the quality of the given data.

Problems

The coefficient vector rM1 learned by a mover model is an estimate of the
joint velocities produced by unit activation of a mover. The mover itself
commands a set of muscle velocities. For a mover which only commands
single-joint muscles, we can predict what the ideal A1t. should be, since
the virtual muscle is specified by the single ratio between its length and
the joint angle.

It turns out that the learned At always underestimates ffii. (i.e. is
biased towards zero). Three effects contribute to this error:

127

0.03 T' +

Thumb FA
Elbow Fi

0.02

0.01

0+

" I I-0,01 m .. .-.

-0,02

4003
-1 -08 -06 -0.4 -0.2 0 0.2 04

Figure 7.4: The linear fit of 6 versus A by the elbow mover modeller,
shown for the elbow and thumb joints. The correlation coefficients for
each joint are: elbow R 2 = 0.817, thumb R 2 = 0.081. The elbow is
sufficiently correlated with the mover activation, but the thumb is not

just as one would hope for an "elbow mover"+

128

1. Joint limits: When a joint reaches its mechanical limit, its velocity
is clipped to zero, no matter what the mover is commanding.

2. Inertia: When the muscle starts moving and pulling on the joint,
there is a lag before the joint begins to move. Likewise, there is a
lag (and oscillation) when the muscle decelerates; but deceleration
occurs after the mover has become inactivated. Thus, only the
acceleration lag is recorded in training data.

3. Gravity: Virtual muscles are spring-like. When a joint is in a
configuration which opposes gravity, the equilibrium point of the
muscle is stretched out farther than the actual joint position.
Large changes in the equilibrium point arc required to produce
small changes in the joint angle. Thus, a large muscle velocity is
needed to achieve the same joint velocity.

The first problem could be mitigated by filtering out samples which
are recorded when the joint is at its limits, since the limits are known
to the motor system (and used, for example, in the calculation of the
pain response). This would, however, complicate the issue of using
mover modellers to model other linear phenomena in addition to vir-
tual muscle activation - how would knowledge of such "extenuating
circumstances" be discovered in general? The second problem could
be partially resolved by eliminating more data from the beginning of
each episode; the problem of discovering how much is necessary is still
a problem. The third issue, the gravity effect, actually demonstrates a
strength of the adaptive paradigm: the real system does not completely
match the theoretical operation, and the learned model reflects that.
However, the model is not sophisticated enough to account for the fact
that this effect varies over the workspace.

7.2 The Toy Finger Robot, Realized

After the mover models have been created and registered, pamet's
proto-controller module can group them together and spawn controller
modules for each independent subset. With the given movers, two
controllers are created: one for the hand and one for the right arm.
The controllers know how to control joint velocities by activating the
appropriate mover modules.

Once those controllers are created, the hand and arm joint velocities
become controllable state parameters, and the proto-action-modeller
spawns action-modellers to learn useful configurations for each. Those
configurations become encapsulated within action models.

129

4

3

2
.......

raw Rawwrd ---
-1 raw Thumb

raw Pad-0 .

-2

-3

-4 [
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 7.5: Recorded hand joint positions W, raw reward R, and re-
sulting reward windows, as a function of time (50 samples per second),
while training the robot to point its finger.

In the spirit of the toy robot example of Section 5.1, we can now
train the robot to point its finger. Due to random mover activation, the
hand moves through its range of gestures, occasionally pointing. The
robot receives positive feedback from repeated squeezes to the hand.
Thus, by lovingly squeezing when the finger is pointing, we can tell the
robot that "pointing is good".

Figure 7.5 shows data collected by an action-modeller while the
robot was being trained. The modeller collects samples (6, R) of joint
angle and reward and then analyzes them in two minute intervals. The
one-second time windows preceding the rewards (illustrated as magenta
pulses in the figure) are taken as the samples which correspond to the
reward joint configuration. By comparing the distributions of rewarded
and unrewarded samples, the modeller decides if the reward is actually
correlated with the recorded joint angles. If not, then the robot was
probably rewarded for activity in some other part of the system, so the
training set is discarded. Figure 7.6 shows the cumulative distribution
functions (CDF's) of rewarded vs. unrewarded samples for thumb and
paddle joints in the example data. In this case, both axes are considered

130

/J

Figure 7.6: Comparison of CDF's for rewarded versus unrewarded sam-
ples, for the thumb and paddle joints, while training the robot to point
its finger. The distribution of rewarded samples differs significantly
from the distribution of unrewarded samples for both joints.

relevant.
If there are any relevant axes, then an action model is created. This

model is a Gaussian model of the distribution of rewarded joint angles
(Figure 7.7). The mean is taken as the prototype hand position -
the goal position of the action. The variance is used in deciding if the
action is equivalent to any new actions learned later on.

Once the action model is registered, an actor module is spawned.
This changes the behavior of the hand. Previously, the fingers and
paddle just moved around with random velocities. Now, in addition to
that, the hand moves to a specific pointing configuration quite regularly,
once every 10 seconds on average. This is due to the random activation
of the actor module.

At this point, the training cycle repeats itself. The action modeller
makes more observations, and tries to learn new actions; if successful,
it spawns new actors. Figure 7.7 also includes the mean and variance of
a second model corresponding to a "grasp" action. Once this model is
learned, the robot's hand begins to alternate between pointing, grasp-
ing, and random motion in between.

Pointing On Cue

The new pointing and grasping actions occur regularly, yet still ran-
domly. However, when the actor modules for these actions are spawned,
the proto-trigger-modeller also spawns trigger-modeller modules for
each, which try to learn appropriate contexts in which to activate the
actors. In the toy-robot scenario, these trigger-modellers are only sen-
sitive to one sensory source, the vector of tactile sensor readings.

131

32- 3

2A8

"2.6
2.4

22

2

1.6

-3.8 -3.6 -34 -3.2 -3 -2.8 -26 -2.4

Figure 7.7: Pointing and grasping action models. The crosshairs in-
dicate the prototype joint positions for each action (blue = pointing,
red = grasping). The ellipses indicate the rewarded vs. unrewarded
decision boundaries determined during training.

132

3 1
law Reward -

action activation
outer thubnt -• !! outer finger

2.5 -ri eward events -i

2

0,5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 &M

Figure 7.8: Data acquired while training the robot to point its finger in
response to touch on the outside of the finger. Pointing actor activation
A, raw reward R, and tactile sense for the outer-finger and outer-thumb
sensors are shown. The vertical green lines mark the discrete reward
events detected after filtering R.

The trigger-modellers capture time-series of samples of (W, A, R)
triplets, where 9 is the tactile vector (the state of the potential stimu-
lus), A is the activation level of an actor, and R is the reward signal.
Figure 7.8 illustrate,, such a dataset from the trigger-modeller assigned
to the pointing action. The goal of the modeller is to discover what
values of the sensor vector, if any, are consistently associated with both
the action and a reward.

The reward signal is fitered to determine discrete instants at which
reward was received. Relative to the reward events, reward windows are
constructed (Figure 7.9) which demarcate the set SR of sensor samples
which might be associated with the reward. Relative to the episodes of
action activation, action windows are constructed which indicate the
set SA of sensor samples that, might be associated with cues for the
action. The intersection, SRn f SA is the set of samples which should be
associated with both the action and the reward.

To decide if the sensor samples SR nS A are actually relevant to

133

rew ard events -Action Windows "

1.6 Reward s

1.4

1.2

0.8

0.6

0.4

0.2

0
0 5oo 1000 1500 200 2500 3000 3500 400 4500 5000

Figure 7.9: Reward and action windows for the pointing-trigger training
session. Not every instance of the action was rewarded; however, every
reward event appears to be associated with the action.

134

Figure 7.10: CDF comparisons for two components of the tactile sense
vector. Each graph compares the "stimulus" samples (those occurring
in conjunction with both reward and action) to the "background" sam-
ples. The left graph, for the outer thumb sensor, shows no significant
difference in distribution. The right graph, for the outer finger sensor,
does display a significant difference. Only the outer-finger sensor will
be used in detecting the stimulus.

cueing the action and receiving reward, the distribution of those sam-
ples is compared component-by-component with the distribution of the
rest of the samples (the "background"). Figure 7.10 shows the cumula-
tive distribution functions (CDF) of stimulus vs. background samples
for two of the tactile sensors, the outer-finger and the outer-thumb.
The thumb sensor shows no significant difference between stimulus and
background sets; it is dismissed as irrelevant. The finger sensor does
show a significant difference and becomes the only component used in
the stimulus model of the trigger. If none of the sensors had been rel-
evant, the modeller would have decided that there was no interesting
training data, thrown it away, and started over from scratch.

Now that it knows that the outer-finger sensor is indeed correlated
with action and reward, the modeller models the stimulus (SR fl SA)
and background -o(SRn f SA) sets as Gaussian distributions. This model
is saved in the registry and a trigger module is spawned. The trig-
ger module continuously monitors the outer-finger tactile sensor and
calculates the probability p(Tis) that it corresponds to a previously-
rewarded stimulus. When that probability breaches a threshold (0.5),
then the trigger will activate the pointing action. Figure 7.11 illus-
trates the stimulus and background distributions learned for this task,
and the resulting stimulus probability function. Pointing will be trig-
gered whenever the outer-finger sensor values exceeds - 0.38. From
the background distribution, we can see that that sensor is usually not

135

35

25

2

0.5

0 02 0A4 0.6 0A8

Figure 7.11: The stimulus model learned for triggering the pointing
action. The green and red curves show the stimulus and background
distributions, respectively, of the outer-finger tactile sensor. The red
line indicates the stimulus mean or prototype. The blue curve is p(TIs-),
the probability of a sensor value resulting in a stimulus, and the blue
line is the resulting decision boumdary. Sensor values greater than
0.38 will trigger the pointing action; values beneath that will not.

squeezed and thus the background mean (and the variance) is low.

Figure 7.12 illustrates the state of sok space after all this learning
has taken place. New to the scene are actors for pointing and grasping
(connected to the hand controller), the pointing trigger, and a variety
of modellers. As the robot ages (via its developmental age), the random
activation of the actors will decrease, until eventually they will only be
activated by triggers. The grasping actor does not yet have a trigger.
If it does not acquire a trigger within a short time (- 30 minutes), then
it will be purged from the system, along with any trigger-modellers
associated with it. Of course, in the future, the robot could always be
taught a new grasping action.

136

- - --

Figure 7.12: State of the system after learning how to move and being
taught to point in response to touch.

137

7.3 "It's a red ball! It's a green tube!"

The same mechanisms which enable Cog to learn hand gestures also
apply to learning static arm postures. When a controller for the arm
joint angles appears in sok space, a position-constant action modeller
is also spawned for the arm. By rewarding Cog (squeezing its hand)
when the arm is in some configuration, it will learn that moving to that
configuration is a worthwhile activity and will create an actor that ran-
domly repeats that motion, again and again. This uses all the same
algorithms and types of modules as with the finger-pointing in the pre-
vious section, only the connections are different and the dimensionality
is higher.

In the finger-pointing, the hand initially moves completely ran-
domly, due to random activation of the hand mover modules. This
causes the hand to explore its state space, and gives the trainer an
opportunity to reward it when it comes across useful configurations. It
turns out that for learning arm postures, the random activation of the
arm movers tends to make training more difficult. The state space of
the arm is much larger than that of the hand, and the random move-
ment explores it quite slowly. Instead of waiting hours for the arm to
spontaneously "do the right thing", it is far easier for the trainer to just
grab and move the arm to the desired position and then reward the
robot. The action-modeller doesn't care how the arm got there. If the
arm decides to move itself at the same time, though, it will compete
with the trainer. Thus, it is beneficial to have the random activation
rate of the arm movers decrease after the arm controller has been cre-
ated.

Figure 7.13 shows three arm postures taught using this technique:
outward, forward, and across. The figure illustrates the prototype goal
positions of the respective action models. Once the robot has been
taught a few postures, it begins moving among them (due to random
activation of the actors). If somen postures are located at the periphery
of the useful workspace of the arm, then the actors will actually do
a better job of exploring the workspace than the randomly-activated
movers do.

Triggering

The next step is to train the robot to move in response to a stimu-
lus. In this case, a visual stimulus is used. The vision system outputs
a 6-element feature vector describing the target image of the tracking
system. This vector is identified as a state parameter to pamet (by

138

Figure 7.13: Prototype postures of three position-constant actions for
the arm: "outward", "forward", and "across". The robot was taught
by repeatedly moving its arm to a desired position and rewarding it.
Once one posture was acquired (and the robot began moving there
spontaneously), the next one was taught.

139

4

3

2

1.5
action actrvation

G --------- "

B
teward events -------

0.5

0
0 1000 20o0 30o 4000 5000 6000 7000 80 M 10000

Figure 7.14: Data acquired while training the robot to reach outward
in response to seeing a red ball. Actor activation A, raw reward R,
and all components of the visual target feature vector 9 are shown.
The vertical green lines mark the discrete reward events detected after
filtering R.

its hard-coded name), and every actor is assigned a trigger-modeller
that tries to find rewarding visual stimuli in terms of this vector. Fig-
ure 7.14 shows data acquired while training the robot to reach outward
in response to seeing a red ball. The corresponding reward and action
windows for that session are shown in Figure 7.15.

The training paradigm is to wait for the robot to execute the ac-
tion, and then simultaneously present the stimulus and give it a re-
ward (hand-squeeze). In other words, the windows for determining the
stimulus are based on the instant of the reward. In the initial imple-
mentation, these windows were based on the onset of the action. This
corresponds to a training paradigm of presenting the cue to the robot
when it begins the action, and rewarding it when the action is complete.

The onset-based method seems like the most sensible and appro-
priate. However, a couple of features of the robot conspire to make
it extremely difficult to use in practice. First of all, due to the wob-
bliness in the robot's arm movements, it is difficult at the onset of an

140

2

1.5

reward events ------
Action Windows

Reward Winoaws
0.5

0
0 1000 2000 3000 4000 5000 8000 7000 8000 00W0 10000

Figure 7.15: The reward and action windows for training the robot to
reach outward in response to seeing a red ball. Note that only a couple
of instances of the action were rewarded; presumably, the red ball was
not presented to the robot during those other instances.

141

Figure 7.16: Comparison of stimulus and background CDF's for the
red, green, and blue components of the visual feature vector. All three
components (and skin-tone and vividness as well) are deemed relevant.

arm movement to predict where that arm movement is going to end
up. Some movements are indistinguishable at the onset in any case:
if the arm is in the "outward" posture, movements to the "forward"
and "across" postures are identical until they stop. Second, the vision
system is always tracking something, but it has no deeper concept of
a target than a small image patch, and the feature vector is just the
moment-to-moment description of that patch. Until a red-ball is stuck
in Cog's face, the last thing it tends to focus on is the trainer's head,
when the trainer moves close enough to reward the robot. If the trigger-
modeller is searching in time for a consistent feature vector following
the action onset, more often than not it will just decide that the best
stimulus was due to the trainer's head, not the ball that appeared next.

All-in-all, it was just too cumbersome for the trainer to keep out of
Cog's sight, figure out what action was starting, get the vision system to
attend to the desired target, and then finally reach over to squeeze that
hand after the action was complete. It was much easier to constrain
the timing of the desired stimulus to accompany the reward, and have
both occur in some window near the completion of the action.

For the red-ball training session described above, Figure 7.16 shows
comparisons of the stimulus and background distributions for the red,
green, and blue components of the visual feature samples. All three
are deemed relevant to determining the stimulus (the sight of the red-
ball). From the CDF's, one sees that. the background distributions were
fairly uniform (precisely uniform would translate into a straight diag-
onal line), whereas the stimulus components were much more sharply
defined. This assessment is borne out in the decision-boundary of the
red-ball trigger, shown in the R'G'B' subspace only in Figure 7.17.
Feature vectors falling within the boundary of the ellipsoid will trigger
the "outward" arm action.

A second trigger was also trained in this experiment, this time to

142

blue

to4

red

green green 00

red blue

Figure 7.17: The stimulus decision boundary of the red-ball trigger,
shown projected into the R'G'B' subspace of the feature vector (and
evaluated at the prototype mean of the skin-tone and vividness compo-
nents). When the feature vector falls within the ellipsoid, the trigger
will activate the outward-reach action. The crosshairs mark the proto-
type stimulus vector in the trigger model.

143

blue

red

green green

02 A 00
O 2 0 6I00 04 0 0

red We

Figure 7.18: The stimulus decision boundary of the green-tube trig-
ger, shown projected into the R'G'B' subspace of the feature vector
(and evaluated at the prototype mean of the skin-tone and vividness
components). When the feature vector falls within the ellipsoid, the
trigger will activate the outward-reach action. The crosshairs mark the
prototype stimulus vector in the trigger model.

activate the "forward" action in response to seeing a bright green tube
(another one of the toys in Cog's toybox). The R'G'B' decision bound-
ary for that trigger is shown in Figure 7.18, and as one would expect,
the ellipsoid is shifted toward a high green value.

It is worthwhile to take a peek at what the "outward" trigger-
modeller was doing in the meantime. Figure 7.19 shows the dataset cap-
tured by the "outward" modeller while the "forward" trigger-modeller
was learning about the green tube. Several reward events were regis-
tered, but none of them was near enough to the endpoints of the active
action intervals (of which there is only one) to be considered coincident
with the action. Since the "outward" action was never rewarded in this
dataset, the dataset was discarded.

144

4

35

2

1.5 - rw Reward

action actNa q

iewafd events
0.5

0
0 1000 2Wo 3000 4000 5oo 6o" 7000 8000 OM Ioooo

Figure 7.19: Data acquired by the outward-reach trigger modeller while
another action/trigger combination was being trained. Several reward
events occur, but none of them is close enough to the endpoint of the
(single) activity period of the outward-reach actor. This dataset was
discarded by the modeller.

145

Figure 7.20: Learned arm postures (and any other actions) can be
modified over time. The "forward" arm action is shaped into a "forward
and up" posture by tugging the arm a bit higher and rewarding it every
time it moves to that position. The associated action-modeller will
adjust the prototype posture in the model (in several stages) instead of
creating a brand new model.

Shaping

Recall that action-modellers continue to manage the actions they have.
created. Instead of spawning a new model in response to new training
data, an action-modeller may choose to refine an existing action. This
allows a trainer to shape and modify an action over time. Figure 7.20
shows the result of such a shaping activity. The lowest posture shown is
the original "forward" posture discussed previously. Over a ten minute
period, every time the robot moved to that posture, the trainer grabbed
the arm and stretched it a little bit higher (i.e. "encouraged" it), and
rewarded the robot. Since the new p)osture was similar enough to the
original, the modeller associated with that action simply adjusted the
action model. Over that time period, the prototype posture was modi-
fied four times, culminating in the highest posture shown in the figure.

Since only the action model was modified in this exercise, and the

146

actor and its connections were unchanged, the previously-learned trig-
ger still applies. In response to seeing the green tube, the robot will
now move its arm to the new, higher "forward" posture.

7.4 Reaching Out

A fourth type of modeller, the transform modeller, opens the door to a
whole new class of behaviors. As discussed in Sections 5.3.5 and 6.4, if
two state parameters have a functional relationship, a transform mod-
eller can learn this relationship; the resulting transform model and
transformer module can act as a predictor, classifier, and controller.

My original intent was to apply this notion to the specific case
of a kinematic coordinate transformation function, in particular, the
transformation between two representations of the position of the right
"hand: as joint angles W of the arm, and as the gaze angles f of the hand
when it is a visual target. If such a transform model is acquired, then
it could be used to perform two inmportant operations. One, it could
add an element of visual state, determining whether or not the eyes are
looking at the head at any particular instant. Two, it could be used
to control the position of the hand in space of gaze angles, i.e. head-
centered world coordinate space. This would lead directly to a reaching
behavior. If the eyes are focused on a target at some gaze angle r0,
reaching to that target amounts to moving the hand so that its gaze
angle r is equal to f0 . Once the transform-moderated controller were in
place, this action could be implemented by a position-parameter action
model.

Much like the mover models, the appropriate transform model should
be learned automatically by a modeller observing the data streams of
arm joint angles and visual target positions. In practice, a number of
factors prevented this. The kinematic model built into the vision sys-
tem, used to calculate the gaze angle of a visual target from its retino-
topic position and the head/eye joint angles, was not accurate enough
and in particular did not account for parallax errors. Just locating the
hand was a noisy operation. The motion detection filter was tuned so
that the tracker would fixate on some part of the hand, but it could be
anywhere on the hand, and sometimes on the wrist or arm, too. The
visual size of the hand varies with its distance; when the hand is close,
there is a lot of variance in the recorded hand position. Finally, the
random arm movement produced by random mover activation tended
to be out to the side of the robot (the bulk of the arm's workspace),
not out in front. Thus, it was rare for the eyes to ever actually see the

147

hand!
In order to experiment with the learning techniques and make some

assessment of how the transform models work, a set of data was recorded
in a contrived scenario. Instead of allowing the head and eyes to
track targets, the head and eyes were fixated, and only the raw retino-
topic coordinates Y of the target were considered. This eliminated any
errors due to the vision system's kinematic model of the head. An
eye-hand-arm transform modeller was set to recording (0, Y) samples
while the arm was manually moved around within the visual field. The
saliency filters, attention module, and tracker otherwise operated nor-
mally, sometimes locking on to and following the hand or arm, other
times focusing on other random visual stimuli. Only the four most
significant joint angles (shoulder and elbow joints) were used. As the
samples were recorded, a human observer manually labelled them as
"tracking the hand" (yý = 1) or "background noise" (-y = 0). The result
of this manual labor was ten datasets of 5000 (W, , 3y) samples apiece,
of which 65% were labelled as "tracking".

Comparing Two Models

Two different types of models were trained to estimate Y = f(W) (Ap-
pendix B). The first is a generic non-parametric, memory-based model
with a smoothness constraint - each estimate is essentially a locally-
weighted average of the samples in the training set. The second model is
a more constrained "semi-parametric" model consisting of terms which
are the sines and cosines of the joint angles. This model is capable of
exactly representing a kinematic coordinate transformation, however it
has many more parameters than are necessary for a compact model of
the kinematics. The performance of each model is assessed using 10-
fold cross-validation; models are trained on combinations of nine out of
the ten data sets, and tested on the tenth.

With optimal smoothing parameters and learning rates, and train-
ing exclusively on the good samples hand-labeled as "tracking", the
RMS (root-mean-square) prediction error of the memory-based model
is 21.3 ± 2.7 pixels; for the parametric model, it is 19.9 ± 2.5 pixels.
Both models appear to do pretty much the same job, and it's not very
good: the full range of the retinotopic data is [0, 127] and the standard
deviation of the training data is 36.3 pixels.

Figure 7.21 shows how the RMS-error performance of each model
degrades as it is exposed to "background noise". In these trials, a per-
centage of the training X samples are replaced with spurious synthetic
data, tailored to act like the acquisition of random visual targets. The

148

45 i

40

'35

" 30

25

20

0 20 40 60 80 100
Spurious Data (percent)

Figure 7.21: Training performance degradation of transform models in
the face of noisy data. The graph shows the RMS-error of a memory-
based and a parametric model of Y = f(0"). The 1 training data is
corrupted with apercentage of synthetic spurious samples which are not
correlated with 0. Both models perform similarly. As the percentage
increases to 100%, their performance drops to no better than random,
as expected.

models are still tested with unadulterated data. As one expects, the
performance of both models degrades to essentially random when the
training data is 100% noise.

In this test, the parametric model performis consistently better, but
not significantly better. However, the two models are not equal. Fig-
ure 7.22 shows the corrlation of the test set 1 with the models' es-
timates. Here it is apparent that the parametric model does a much
better job of locking on to the Y data which is actually functionally re-
lated to 9, even as it is flooded by more and more spurious data. In the
presence of 80% junk data, the correlation of the parametric model's es-
timate with the measured signal only drops to 0.64 (from 0.82), whereas
the memory-based model drops to 0.19 (from 0.79). This corresponds
to the situation where the eyes are only tracking the hand 20% of the
time, which is hardly unreasonable. If the hand-tracking data were it-

149

0's

0.4

o 02T

0

-0.2

nurmory based

parametric-,0.4

0 20 40 60 80 100
Spurious Data (percent)

Figure 7.22: Ability of transform models to lock on to signal in the face
of noisy data. The graph shows the performance of a memory-based
and a parametric model of i = f(W), as measured by the correlation
of the i estimate with a test set. The Y training data is corrupted
with a percentage of synthetic spurious samples which are not corre-
lated with W. The parametric model maintains better correlation than
the memory-based model in the presence of much more junk data; it
appears to "lock on" better to the underlying signal.

self better (more precise localization of the hand), then the RMS-error
performance of the parametric model would certainly improve, and this
ability to lock on to the kinematics might allow it to discover and model
the eye-arm correlation completely automatically.

This is also an argument for populating pamet with very specific
models tuned to specific classes of phenomena. A true parametric
model of the arm kinematics, with no more free parameters than nec-
essary, would presumably lock on to the good training data in the face
of an even higher percentage of background noise.

150

7.5 The Final Picture

Figure 7.23 shows a schematic of the system after all this learning
and training has taken place. In contrast to Figure 7.1, the system
has acquired quite a bit of new, explicit structure linking the sensory
systems to the motor systems via learned behaviors.

151

I-

II---- --- - - - -

) 4 AI L

(i

Figure 7.23: Schematic of the system after the robot has learned to
point its finger, learned to move its arm to various postures in response
to visual stimuli, and learned how to move its hand in the visual field.

152

Chapter 8

Looking Back, and
Forward Again

This dissertation describes a system which enables a humanoid robot,
Cog, to be taught simple behaviors by a human trainer. The system
begins with little explicit structure beyond basic sensory and motor
systems grounded in the robot's hardware. However, it does have rules
for creating structure. By exploring and interacting with the world, it
builds a small hierarchy of knowledge on top of the initial foundation.

In many ways, this work seeks to be a synthesis of two projects
described in the introduction: Drescher's schema mechanism [16] and
Metta's Babybot [36]. Starting with raw sensory and motor primitives,
the schema mechanism's simulated robot could explore its grid-world
and learn progressively more abstract relationships about that world.
However, the binary grid-world is too simple and perfect; the mecha-
nism developed for it cannot be directly applied to a robot which exists
in the real world. Babybot, on the other hand, is a real robot, which
learns to look at and reach out to real objects. However, Babybot is
prewired to learn precisely this task and the component faculties which
lead up to it. Without enough sensory stimulation, Babybot may fail to
learn this task, but no amount of training will ever make it learn to do
anything else. The qualitative structure of what Babybot can and can-
not do is predetermined by the connections of the very specific models
which are coded into it. My own work is an experiment in combining
the dynamic properties of the schema mechanism with the real-world
constraints of Babybot.

153

8.1 Creating Structure: What pamet Can
and Cannot Do

With its pamet, Cog can learn some simple motor behaviors triggered
by simple sensory cues. It can move its hand and arm to static postures,
and it can almost move its arm to where it is looking. The triggers can
be tactile -... touch to a part of the hand -- or visual -- gazing at
something of a particular color. Some learning is automatic, such as
the acquisition of mover models to describe the motor system. Actions
and triggers, on the other hand, are trained by a human teacher who
rewards the robot for doing the right thing. Both the actions and
triggers can be slowly refined over time, modifying the response or the
stimulus while maintaining the causal connection between them.

Although the words "action", "state", and "reward" evoke reinforce-
ment learning [281, in this system the words are used with a different
emphasis. The classic reinforcement learning scenario involves sets of
discrete states and actions; the problem is to decide on a policy for
which actions to take in each state in order to maximize a reward
(which might only be received once, at the end of a journey through
the state space). In contrast, the learning in actors and triggers is
really directed at a precursory problem: determining what the actions
and states should be. An action model, instantiated by an actor, defines
a discrete action in terms of a class of manipulations of a controllable
system parameter. A position-trigger model defines a discrete state in
ternLs of a fuzzy region of some portion of a continuous parameter space.
In this context, the reward signal is not really used as the long-term
optimization criterion. The positive reward signal is better thought of
as a perceptual cue, with certain learning mechanisms hard-wired to
correlate that specific cue with other perceptual data. Once an action
or trigger is learned and well-established, the robot should not expect
to continue to receive direct reward for further instances of that action
or trigger. A child shouldn't expect a gumdrop every time she wipes
her nose, but she should keep wiping her nose!

In pamet, triggering stimuli are modelled as unimodal Gaussians,
but the system can acquire a multimodal stimulus as long as the train-
ing can be decomposed by pre~senting one mode at a time. The system
will then learn a separate model for each component of the complete
distribution. What the system can't do is acquire a stimulus which is a
conjunction of two different sensory modalities (i.e. tactile and visual,
two separate state parameters). This could be implemented, though,
by outfitting each trigger-modeller with an arbitrary number of inports
A'i and letting them be treated as one big stimulus vector s.

154

When a trigger model is created, a decision is made as to which
components of the stimulus vector are relevant. If the model is later
refined, the distributions of those components are updated, but the
choice of components is never changed. A new model with even one
more or one less component than an old model is considered completely
different and would never be used to refine the old model. This behav-
ior could possibly be changed by keeping and comparing the relevance
statistics (the difference between stimulus and background CDF's, Sec-
tion 6.3); if a component of the old model was just under the relevance
threshold, and is just over it in the new model, the two models could be
considered similar. This same limitation (and possible solution) applies
to action models as well.

Any one action or trigger modeller can only learn one thing at a
time. For example, if an arm action modeller sees reward for two dif-
ferent postures during the same training session, it will either conflate
the two (and learn the average posture), or ignore them (and discard
the data). This also means that the robot cannot be taught indepen-
dent arm and hand postures simultaneously. Two action modellers are
involved (one for the hand, one for the arm), but both see the same
reward signal, and if the reward is mixed between modellers, they will
be confused. On the other hand, it is possible to simultaneously train
two trigger stimuli, as long as the trigger modellers are assigned to dif-
ferent actors. The learning is tied to the execution of the actions; as
long as the actors are activated at different times, they will remove the
ambiguity in the reward signal.

The transform modellers will not be able to learn an eye-hand-arm
transformation without a more elaborate vision system or, perhaps, a
more constrained coordinate transform model. However, once working
automatically, the same mechanism would apply to both right, and left
arms. If transform models connecting joint angles to eye-gaze angles
were learned for both, then the positions of the right and left hands
would share a common representation. This would immediately allow
for coordination of their motion. A simple implementation of "hand-
clapping" could be "adjust the joint angles of each arm such that the
hands move to the same location in eye-gaze space". Such a behavior
does not actually require any visual input. Once the common represen-
tation was established via interaction with the vision system, the eyes
could just as well be disconnected.

155

8.2 Unsatisfying Structure: Hacks

In a project involving machine learning, the inevitable research compro-
mise between "principles" and "finishing" means that structures creep
in as crutches which help to get the job done. One hopes that these
crutches will be discarded in further revisions of a project, so it helps
to point out where they are.

Meso Movers

The meso mover modules were implemented as a simple way to pa-
rameterize motion and to get the robot moving when first powered up.
However, they are too simple and are only usable if a number of features
and complexities of the motor system are ignored.

First, the movers activate virtual muscles with fixed, hard-coded
stiffness values. If these movers are the only link between pamet and
meso, then there is no way to modulate muscle stiffness throughout
movements. All the arguments for implementing controllable stiffness
(task-specific tuning, increased efficiency) are moot if the controls are
never adjusted!

Second, the action of a mover is implicitly linear. Mover models
assume a linear relation between mover activation and an affected state
parameter, i.e. joint angle. Even without the measurement problems
described in Section 7.1, such a relationship will only hold for meso
movers if all the virtual muscles involved are single-joint muscles, in
which the muscle length set-point translates into an equilibrium point
in joint angle. For multi-joint muscles, the length set-point defines an
equilibrium surface in joint space, which cannot be represented by the
simple mover model. Again, if multi-joint muscles are never going to
be activated by movers, then all the work that went into implementing
them is for naught.

Third, the split of movers into "arm" and "hand" groups is rather ar-
tificial. Recall that there are two hand movers and thirteen arm movers.
Members of each group have mutual inhibition interconnections so that
only one member of each group is ever active at a time. Most movers
affect more than one muscle, but no muscle is driven by movers from
different groups. If the torso and the left arm were brought on-line,
presumably each would have its own group of movers as well. The re-
sult of such a division is that independent controller modules develop,
one corresponding to each group of movers, and this partitions the joint
angle space into more manageable chunks, e.g. hand joints, right arm
joints, torso joints, etc.

156

What is needed is a representation which can capture the locality
constraints of the muscles and joints without making hard divisions.
The fingers and the wrist are close together, kinematically, and thus
will often need to be used in synchrony. Imagine pushing a button:
the whole arm needs to be positioned in roughly the right place, but
then the finger and maybe the wrist handle the details of the action.
Likewise, shoulder joints and torso joints affect each other: when lifting
an object, changes in the torques produced by the shoulder also need
to be accounted for by counterbalancing forces in Cog's hips (or, for
a person, her back). However, torque changes in the wrist which are
small enough to not affect the shoulder probably won't affect the torso
either.

In terms of pamet, I imagine that such a representation would lead
to action-modellers which observe and model overlapping subsets of the
joint angles of the robot: one looking for utile postures of hand only,
one for hand and wrist, one for wrist and tipper arm, etc.

Finally: the meso movers don't even do a very good job of making
the robot move randomly, especially with respect to the arm. Since the
movers drive the muscles with random velocities, the resulting motion
amounts to a random walk in joint space. At any one moment, at least
one of the arm joints tends to be driven against its mechanical limits; it
stays that way until all thirteen movers happen to become deactivated
and the arm is allowed to relax. A secondary issue is that much of
the actual workspace of the arm is out to the side of the robot, out of
the range of the vision system. A better scheme for random movement
would bias the motion to the front of the robot, the region where most
interaction with objects and people will occur.

Actor Timing

Actors are little position-controllers: when activated, they produce a
stream of appropriate velocity commands to drive a state parameter to
a goal value. They are full of hard-coded constants which should even-
tually be removed or parameterized. For instance, the overall speed at
which the parameter is moved is regulated by an arbitrary constant
which has been tuned to result in reasonable hand and arm motions.
This constant will not necessarily work for any other actuators or pa-
rameters. Also, this constant should not be constant - at some point,
the robot should be able to decide how fast or slow a movement (or
other parameter adjustment) needs to be.

When an actor is activated, it remains activated until the target
parameter is within some threshold distance to the goal value, or un-

157

til a timeout occurs. The threshold distance is currently an arbitrary
constant which could be reasonably parameterized based on the vari-
ance of the goal prototype in the action model. Likewise, the timeout
is an arbitrary constant of a few seconds duration. Since an actor
doggedly pursues its goal, even when initially activated for only an in-
stant, the timeout is necessary to allow it to give up on unobtainable
goals (e.g. if the arm is physically restrained, it will not be able to
move to the "forward" posture). The timeout could be eliminated if
goal pursuit were pushed back into the triggers or some intermediary
module, which would then be in charge of keeping the actor activated
as long as necessary.

Another set of time constants in actors control the random acti-
vation rates and expiration of the actor. They have been hand-tuned
to make training the robot, in the scenarios presented in Chapter 7,
a reasonably snappy experience. It is not clear how these constants
should change as the system scales since the random activation rate,
the number of competing actors, and the trade-off between exploration
and exploitation are all tied together.

Vision Black Box

As it stands, the vision system (Section 4.2) is a black box sensory sys-
tem, providing only outputs describing where it is looking and what it
is looking at. It operates in a purely reflexive manner, semi-randomly
picking targets to gaze at in accordance with the hard-coded saliency
filters. This box needs to be opened up so that, the gaze can be con-
trolled by learned behaviors.

Although head-eye coordination has been made adaptive in pre-
vious work on Cog [32], in this vision system, head-eye coordination
is computed using the measured kinematics of the head. It would
be worthwhile to try reimplementing the tracking system using trans-
former modules which learn the transform between retinotopic and head
motor coordinates.

The saliency filters and attention system should be exposed to
pamet. This means that the weighting of the filters could be changed
to suit the task at hand. Also, the output of the filters themselves
would be available to the behavioral system, giving it the potential to
determine better criteria for choosing what to look at.

Finally, the motion detection filter was tweaked specifically to make
Cog's right hand a salient feature to the vision system. When something
moves in the field of view, the motion detector reports saliency near
the end of the moving region which is closest to the top-left corner of

158

the screen. If the moving object is the right arm, coming into view
from the bottom-right, this targets the hand. Fortunately, this same
heuristic also picks out the heads of people walking around the room,
which is another appropriate target for Cog's vision system. In future
work, these biases should at least be balanced so that, for example, the
left hand is as salient as the right.

Hard-wired Tactile Reward

The tactile sense is hard-wired into the emotional system to produce
positive reward when the hand is squeezed. In principle, this is a rea-
sonable idea: pamet needs sources of innate primitive and negative
reward which ground-out the behavioral decisions it makes. However,
since this is currently the only source of positive reward, it makes the
hand seem like a bit of a "magic training button".

This innate tactile reward percept needs to be refined, perhaps to
more distinctly favor gentle, "soothing" hand squeezes over abrupt,
sharp tactile sensations. Overall, the system needs more sources of
innate reward, tied to other sensory modalities, such as detection of
smiles and vocal encouragement ("Good robot, Cog!").

8.3 New Structure: Future Work

pamet is by no means finished. There are several features on the draw-
ing board which should be implemented in the next cycle of develop-
ment of this project.

Negative Reward, Inhibition, and Un-learning

Although meso provides two innate sources of negative reward (joint
pain and muscle fatigue), and the emotional system's emo/sad module
turns those into a global negative reward signal, that signal is not yet
used anywhere by pamet. The positive reward signal is a cue to tell
the robot when it is doing something it should be doing; likewise, tie
negative reward signal should be a cue that the robot is doing something
that it should not be doing.

pamet needs modules for learning and instantiating models of inhi-
bition. One manifestation could be a model which specifies regions of
a parameter space to be avoided. The model could be used to send an
inhibition signal to, say, a mover module which was driving the arm
to its joint limits. As another example, a subsystem which gives the
robot upright posture could be implemented as a cascade of two types

159

of inhibition. First, reaction to the joint pain signal causes the robot
to avoid driving its hip joints to their limits, so the robot will not rest
in a slumped over position. Second, maintaining any torso position be-
sides fully upright and balanced requires a lot of force, and thus induces
muscle fatigue. Reaction to the fatigue signal would favor movements
which keep the torso upright.

A connection from an inhibitory model could also augment a trig-
ger; the inhibition model would specify an overriding condition I under
which a stimulus S should be ignored. This is different from just learn-
ing a model of a stimulus Sn -•I in two ways. First, it may be easier to
learn in two separate steps, first S and then I; the inhibiting context I
might not even arise until much later in the robot's development. Sec-
ond, the two contexts S and I may each be independent in their own
right. The state represented by S might be valuable and used by other
modules, even if one particular action should be inhibited. A common
state represented by I might lead to inhibition of, say, three triggers, so
it makes sense to learn it once in one place instead of modifying three
other contexts simultaneously.

A further use of inhibition is un-learning: instead of repeatedly
inhibiting a learned action or trigger, it may be better to just forget
it. Already in pamet, an action model expires if the actor instantiating
it is never explicitly activated; if no other module ever requires the
action, then it is considered a mistake and is removed from the system.
However, there is no mechanism for forgetting a trigger: once the robot
learns to raise its arm in response to seeing the "green tube", it will
always try to do that. If an action or trigger is consistently inhibited,
however, it should probably just be removed from the system.

Feedback Channels in sok Connections

If two actors connected to the same controller module are acti-
vated simultaneously, only one will have any effect. Arbitration logic
in the controller's drive inport will allow messages from the first active
incoming connection to pass through; the drive signal from the second
activated actor will be discarded (until the first actor is done). In the
current implementation, these messages are discarded silently: the sec-
ond actor will not be told that it is being ignored. The problem here
is that this actor will continue to tell the rest of the system that it is
active. A trigger-modeller observing the activity of the actor may then
falsely associate some stimulus with it, even though the ignored actor
is not having any effect on the behavior of the robot.

A solution to this problem is to implement a feedback channel in

160

sok connections, such that the sending process is informed when its
messages are being rejected or when the receiver is under some type
of inhibition. The snag in implementing such a solution is that a sok
outport supports multiple outbound connections. If an outport is dis-
tributing a message stream to six different receivers, and only one of
them rejects it, should the process be told that it is being ignored by
the system or not?

Activation-Delay Triggers

In addition to the position-triggers already implemented in pamet, an
activation-delay-trigger was suggested earlier. The stimulus for such a
trigger is the activation signal from (or to) another module. The trigger
fires after some delay following the stimulus activation. This delay is a
learned parameter in the trigger model. Such a trigger would allow the
system to learn sequences of actions. One trigger would fire, activating
the first action and the second trigger. After a delay, the second trigger
would fire, activating the second action, and so on.

Attention, for Learning

Learning in pamet is currently an anarchic process: each and every
modeller is always observing its inputs, watching for correlations and
trying to find something to learn. The modellers do not directly inter-
fere with each other; however, it is possible for one modeller to latch
onto some spurious correlation while the true target of a trainer's inten-
tions is simultaneously being learned by another modeller. This leads
to behavioral noise due to extra actions, etc., that get created and end
up hanging around in the system. This is not much of a problem when
the system is small, with few state parameters which are mostly orthog-
onal to each other. But as the system grows in size and complexity,
there will be many more modellers and parameters and the problem
will get much worse.

What the system needs is an attention mechanism which allows
learning to be focused on a particular region of the behavioral space.
If a trainer is teaching the robot to shake hands, it should be able to
concentrate on the arm movement and the presentation of the trainer's
hand, while ignoring the color of his hat. This could perhaps be im-
plemented as a distributed inhibition - modellers would compete with
each other for the privilege of learning, somehow based on how relevant
their models are to the current activity in the system.

161

Online Learning

All of the modellers have been implemented using batched training:
they record a large set of samples and then analyze the whole set at
once to look for useful models. This is convenient from the researcher's
point of view; because each batch of data is independent, it is easy to
simulate and analyze the modelling off-line on recorded datasets. From
the behavioral viewpoint, though, it is a nuisance. In trigger training,
for example, there is a five minute window in which a trigger modeller is
silently collecting data, followed by 30 or so seconds of analysis. If the
trainer happens to engage the robot in the second half of a recording
cycle, that cycle may not end up with enough significant data overall.
Two minutes of training could be discarded just because the trainer
was out of phase with the robot. If the learning used online algorithms
without these arbitrary, invisible batch boundaries, training would be
a more fluid and efficient process.

The action and trigger models cannot be trained with strictly on-
line algorithms, since some historical analysis is necessary, e.g. the
"reward windows" which precede action events. But, the modellers al-
ready record five minutes of samples at a time. This data could instead
be kept in a rolling buffer. There would be a constant latency in model
updates but no acquired samples would ever be wasted.

Revisiting Previous Projects

The best sources of brand-new directions for this work are the previous
projects done on Cog. Much of the previous work explores particular
faculties or subsystems which are important components in a humanoid
robot. The trick would be to reimplement earlier work such that it stays
true to the transparent, distributed design philosophy of pamet.

Work such as Scassellati's theory-of-body [45] would translate into
new classes of models. Breazeal's work [71 could be transplanted as a
much more significant emotional system, accompanied by innate social
gestures. Fitzpatrick's project [18] would lead to models for "objects"
and interactions with objects, as well as more robust visual primitives.
Trying to up-end any one of these projects and integrate it into pamet's
framework would require a lot of conceptual reorganization, probably
worthy of another dissertation for another graduate student.

162

8.4 Unintended Structure

In this kind of project, we try to devise simple systems which can cope
with a complex world. However, the interaction between the world and
the system is sometimes more complex than we imagine. Even when
something "works", it is not necessarily working the way we think it
does. I present here one small cautionary tale.

As long as there is a bit of activity in the room, Cog's vision system
keeps the robot looking around fairly randomly and uniformly. To the
casual observer, the robot appears to be naturally looking at different
things in the room. What is not obvious, however, even to the people
who designed the system, is that this behavior requires that, the floor
is blue.

One night while working on the robot, the color-content saliency
filter froze and stopped producing output. Since the code I was working
on at the time only needed motion detection, I didn't bother to restart
the color-content filter. Soon, however, the robot's gaze was fixated on
the ceiling. It turns out that the color-content filter is necessary for
the "natural around-the-room" gaze behavior of the robot, because it
allows the blue floor in the room to exert a downward influence which
counteracts an overall upward influence from the ceiling (exerted via
the skin-tone filter). If Cog were pushed into a room without primary-
color linoleum flooring, it would stare at the ceiling all the time.

The moral of this little story is that the real world sometimes has
even more structure than one hopes for. Dependencies on such struc-
ture will inevitably creep into any design. The process of developing a
system is often more organic than the system itself. It takes on a life
of its own, and life has a way of exploiting all the structure it can find.

8.5 Round, Flat Structure: Flapjacks

I began this dissertation with the admission of my own pet dream for
Cog: to create a robot which I could teach to make pancakes. Cooking
pancakes is a relatively simple procedure by human standards, some-
thing I learned to do myself when I was only a few years old (with
adult supervision, of course). However, learning this task from another
person requires a lot of background knowledge and the ability to handle
some fairly abstract concepts.

Let's break down the "make pancakes" task into bite-sized pieces:

1. Turn on the electric griddle; let it warm up.

163

2. Pour batter from pitcher onto the griddle.

3. Wait until first side is cooked.

4. Flip.

5. Wait until second side is cooked.

6. Serve.

Conceptually, the two simplest. steps may be "4. Flip" and "6. Serve",
although they are also the most mechanically complicated. The basic
operation is "lift a discrete object and turn it over". To learn this
by watching a human, the robot would need some ability to imitate
third-person body movements. It would also need an understanding of
object manipulation and the ability to distinguish the "pancake" from
other objects, so that it could understand the actual goals of the arm
movements and hone its performance accordingly.

Step 2, "Pour batter", is mechanically simpler than flipping a pan-
cake. However, now the robot has to deal with a fluid, flowing freely
under the influence of gravity. The speed of that flow is related to
how the pitcher is being held and the amount of fluid remaining in the
pitcher. The goal of this operation is to create a fluid disk of a certain
size on the griddle. The robot will have to know how fluid flow relates
to growth.

Steps 3 and 5 are both waiting, but for vague visual criteria rather
than a concrete duration. Usually, in pancake parlance, the first side
is done "when bubbles stop forming and rising to the top". To evaluate
this, the robot needs a vision system capable of seeing and gauging
the density of air bubbles in the batter, and the saliency of these bub-
bles has to be pointed out to the robot. Furthermore, the existence
or even the density of the bubbles is not the important feature, but
rather the rate of change of the density. It is almost impossible to
imagine indicating such an abstract concept to the robot without some
form of language, be it vocal or gestural. And for this, the robot will
need to have already acquired that concept of rate of change via prior
experience.

Finally, there is an implicit seventh step, "Repeat", in which the
robot closes its training loop and makes a new pancake, tuning its
technique and improving on the last one. How will the robot asses
its performance? The human chef judges her skills by eating the pan-
cake. The important qualities of pancake are its taste and texture, as
experienced by the mouth. The visual appearance is secondary, impor-
tant mostly as a predictive indicator of the taste. Other people eating

164

and judging the pancake will report on it in terms of taste and tex-
ture, possibly connecting back to cooking technique: "too crispy" or
"undercooked". As the chef cooks more pancakes, she makes connec-
tions between changes in technique and changes in aspects of the taste,
thus learning how to adjust her cooking style to achieve different re-
sults. The poor robot, however, does not eat its own pancakes! Even if
the robot is given a differential performance report from human tasters
-- "better", "ok", "too dark" - and even if it tries to connect this to
the visual appearance, the most important "state" of the pancake is
completely hidden from its perception. This puts the robot at a great
disadvantage in its training as pancake chef.

As this pancake task illustrates, the greatest difficulties in creating a
human-level machine intelligence appear to arise from the mundane, the
sheer volume of the interrelated everyday experiences which comprise
our understanding of the world. Our ability to perform a single narrow
task depends on an enormous breadth of "simple" knowledge. Human
interaction and communication is based on shared experiences which
are so very common that we rarely take notice of them. For a machine
to seamlessly interact with and learn from humans, it needs to be able to
participate in these pervasive but all-too-easily overlooked experiences.

165

166

Appendix A

Details of the Complex
Coupling Model

The lower level of meso (Section 3.3) is a skeletal model, which han-
dles the kinematics of the musculature simulation. The purpose of the
skeletal model is to calculate two functions: U(O), the vector of lengths
of the virtual muscles, and F(O, F), the vector of joint torques. The
inputs to the skeletal model are W, the skeletal configuration expressed
as a vector of joint angles, and F, the vector of muscle forces provided
by the muscular model (Section 3.4).

Of the two different skeletal models implemented on Cog, the "com-
plex coupling" version treats virtual muscles as lines of force in space,
connecting points anchored to different parts of the robot. To calculate
the two functions, this model requires a kinematic description of the
mechanical linkages in the real robot and a list of the anchor points of
the virtual muscles.

Coordinate Frames and Transforms

The robot can be described as a tree of segments, or links, connected
by revolute joints. Each link has an associated coordinate frame, and
a kinematic description of the robot amounts to specifying how these
coordinate frames relate to each other.

A frame is aligned such that the i axis matches the joint axis, and
usually the i axis is parallel to the major axis of the associated limb
segment (Figure A.1). A point in space which is described by a vector
g in the jth frame is labeled 317. The origin of the jth frame is defined

167

j frame j

frame j- 1

Figure A.1: Coordinate frame (j - 1) is the parent of frame j. Vectors
J7l and J- 1jf describe a point relative to the respective frames. -'

defines the origin of frame j.

by a vector i-1o in its panrnt frame j - 1. (Note that ¾ j= 0. It's the
origin, after all, for that frame.)

The transform jT changes the reference frame of a point from j to i.
That is, 'ff = 'T 3#. For any two frames i < j connected by a kinematic
chain, 'T= ,,r'+l' ... j-1T.

I I i+2"

'T is actually a rotation and a translation,

T11-= !RJV+ 1y, (A.1)

where q' is the position of the j'h origin relative to the i±h frame; R
is expressed as a 3 x 3 matrix, which depends on the parameterization
used to specify the relative orientation.

Linkage and Muscle Description

The canonical Denavit-Hartenberg form allows each frame to be. very
compactly described by four parameters f151. However, this form does
not allow for the description of branching chains, i.e. a ground-rooted

168

J-1/

frame j - 1

Figure A.2: The skeleton is described as a tree of connected links. The
origin of a link is specified by (x, y, z) position relative to the parent
link. The orientation is specified by relative rotations J3 (around ý) and
a (around :/).

torso with two arms connected to it (and potentially a head, as well). I
have chosen a more general description with six parameters: x, y, z (all
constant) to position a joint in its parent frame, a, 13 (both constant)
to set the joint's orientation, and 0 (variable) to indicate the joint angle
(Figure A.2). An implicit seventh parameter in this description is the
identity of the upstream parent frame in which a joint is rooted.

A parameterization is mostly a matter of convenience; all it needs
to do is to provide the transformation j- T which describes how a child
frame relates to its parent. Under the specified parameterization, the
transformation is given by:

(c,3 + s/8sasO -c/)3sO+sflsacO -s13ca
R = ca sO ca cO sa A.2)

sf3cM-co sasO -s13sO-cO sacO c1ica
j-lj = (x,y. z)T (A.3)

where cfl = cos,3, s)3 = sin f3, etc. Note that since J-R is a rotation

169

(an orthogonal matrix),

i-R = (-1R- = (-RT

Thus the "push-back" transformation (sending a vector into the parent
frame) is trivially invertible into the "push-forward" transformation.

Once the skeleton is described as a collection of frames, virtual
muscles have a simple description. They are just lines defined by their
two endpoints, 3fIA and 'fij,. Each endpoint (A or B) is specified by
a position vector anchored in a particular link's coordinate frame (j
or k), corresponding to the parts of the robot to which the muscle is
attached.

Calculation of Muscle Length

Muscle length lAB is simply the cartesian distance between a muscle's
two anchor points, JgA and k#Bp. To calculate the distance, however,
we must first transform the endpoint vectors into the same reference
frame:

"kPA = kT'JJA

Although the anchor vectors are constants (in their respective frames),
the transformation is a function of the skeleton/joint configuration.
Hence, the length becomes a function of the joint angles

Calculation of Joint Torque

Given the magnitudes of the forces to be applied by each virtual muscle,
the skeletal model must also calculate the resulting equivalent torque
to be applied by the motor controllers.

A torque F can be calculated as the cross-product of a force vector
1 with a moment arm -F. For a virtual muscle anchored at ý#A and

kPRB and spanning joint j (where i < j < k), the force vector lies on the
line connecting the anchor points, and the moment arm is any vector
from joint origin jqj to any point on that line. We can simply choose
anchor k13R as that point.

Given the force magnitude F:

F- FPR -PA F
=F = -- --A)

= B - F
Fj xF=- (9B - 9A) X(13 - 4j

170

Again, all vectors must be transformed into a common reference frame.
We choose the jth reference frame, which is what we need to get the
torque experienced by the joint. Recall that i¾ = 0:

Ji = x ×Fx
F.

- (j9A X j#B).lAB

Only the 2 component is needed (the 1 and) components become
strains in the joint bearings):

Tjz = (F) (JPAjPB! -- PA5 PBP)"

This calculation is performed for every joint j (i < j _ k) spanned by
the virtual muscle.

Each virtual muscle m contributes a vector of torques !,, to the
robot (one component per joint, where most are zero) to yield F(W, F),
the skeletal torque of the virtual musculature.

171

172

Appendix B

Two Transform Models

Two function approximation techniques were applied to the transfomn
model discussed in Section 6.4. The first is a non-parametric, memory-
based approach; the second is a semi-parametric approach designed to
capture a coordinate transformation. The memory-based approach is
generic and trivial to train, but estimation is compute-intensive. The
semi-parametric approach requires more tuning, but provides faster
estimates and exact derivatives.

B.1 Non-parametric: Memory-based Model

Given a corpus of N training samples (ij, Yj), an estimate i for f(1) is
calculated via

zoi
The estimate is a locally-weighted average of the training samples. The
variance (a2 sets the size of the averaging neighborhood. This imposes
a smoothness constraint on the function f ().

This estimator only provides good estimates in regions of the input
space with sufficient sample density. Thus, it requires a quantity of
training data exponential in the number of input dimensions. Because
the estimator must iterate through all the samples, this slows down the
computation.

Many variations on the basic algorithm address these issues. The
computational load can be lightened by taking advantage of the fact
that relatively distant samples contribute almost nothing to an esti-
mate. At the expense of accuracy, nearby samples can be identified

173

quickly using approximate-nearest-neighbor techniques [26]. The need
for high sample density can be reduced by techniques such as locally
weighted regmession [46] which impose additional constraints on the
data.

B.2 Semi-Parametric: Loose Coordinate
Transform Model

Suppose the transform we wish to learn is the particular cas of finding
the cartesian coordinate position of the endpoint of a multi-joint limb.
Let's call the cartesian position Y and the vector of joint angles W. We
want to learn f such that X = f(W).

The mathematics involved has already been overviewed in Appendix A.
In the language used there, we are trying to determine

Y= Og= qT(W)ig7

where i# is the position of the endpoint of the limb in the coordinate
frame of the last segment in the limb and 9T is the composite transform
which pushes back a vector from the jth frame to the base, frame of the
robot (or whatever frame we want the cartesian position in). Given
that the limb segments themselves are rigid, J5is a constant, but 9T is

a function of W. In fact, qT(W)'/7 is just the f(W) which we are looking
for.

How shall we model this? PT is the composition of all the link-to-
link transforms,

°T = OT'T ... jT,

and each of those one-step transforms is given by Equations A.1, A.2
and A.3. To create a "tight" parametric model, we could multiply these
matrices together to get the explicit form for °T(W)jg. This model will
have six parameters per joint - the (a, 0, 0o) and "-'4 which define
each link's coordinate frame - plus three parameters for 'if. Thus, the
number of parameters is linear in the number of joints. A four-joint
arm will require 27 parameters.

Now, if we are feeling a bit lazy (and after eight chapters of thesis,
who isn't?), we aren't going to want to do all that long-hand matrix
multiplication. And we certainly aren't going to want to evaluate all the
derivatives needed to come up with training rules for each parameter.
But at the expense of an exponential number of parameters, we can
take a shortcut.

174

Note that each '-IT depends only on 0•, and that dependency shows
up as additive terms containing either sin 0i or cos Oi. If we had over-
come our laziness, the final expression for each component of Y would
be a sumn of terms of the form wZoZ1 ...Zj. Each Zi is either sin0j,
cos 0i, or 1 (in case 0i does not appear in that term), and w accounts
for all other parameters (a's, O's, etc.). We can write this as

3"~ -1

Y= i •Zi (A), (B.1)

where Zi(W) = zi(l)(Ol)...zi(.)(O.) and i(j) is the jr" digit of i ex-
pressed in base-3, and

zo(O) = 1

zI(O) = coso

Z2(0) = sin0

Equation B.1 gives us a "loose" parametric model for a coordinate
transformation. It's loose because it has many more parameters than
are absolutely necessary -... for n joints, it requires 3 ý+I parameters
instead of 6n + 3. There are a lot of interdependencies among the Oj.
All the sanme, this model is capable of exactly representing the target
function Y = f(W'). Since the model is linear in Oi, a gradient-descent
update rule is trivial to compute:

,• = -A(AZ)Z, (0)

Exact derivatives can also be computed (necessary for a transformer
module to act as a controller) by replacing the appropriate zi(j)(Oj)
quantities with Zi(j)(0i).

175

176

Bibliography

[1] Bryan P. Adams. Meso: A virtual musculature for humanoid motor
control. Master's thesis, Massachusetts Institute of Tec4hnology,
Cambridge, MA, September 2000.

[2] A. Billard, K. Dautenhahn, and G. Hayes. Experiments on human-
robot communication with robots: an imitative learning and com-
municating dollrobot. Technical Report CPM-98-38, Centre for
Policy Modelling, 1998.

[3] Aude Billard and Gillian Hayes. DRAMA, a connectionist archi-
tecture for control and learning in autonomous robots. Adaptive
Behavior, 7(1):35.-63, 1999.

[4] Emilio Bizzi, Simon F. Gistzer, Eric Loeb, Ferdinando A. Mussa-
Ivaldi, and Philippe Saltiel. Modular organization of motor behav-
ior in the frog's spinal cord. TINS, 18(10):442 446, 1995.

[5] Bruce Blumberg, Marc Downie, Yuri Ivanov, et al. Integrated
learning for interactive synthetic characters. In Proceedings of
the 29th Annual Conference on Computer Graphics and Interac-
tive Techniques, volume 29, New York, NY, 2002. International
Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH-2002), ACM Press.

[6] C. Breazeal, A. Edsinger, P. Fitzpatrick, B. Scassellati, and P. Var-
chavskaia. Social constraints on animate vision. IEEE Inteligent
Systems, 15(4):32 -37, 2000.

[7] Cynthia L. Breazeal. Social Machines: Expressive Social Exchange
Between Humans and Robots. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, May 2000.

[8] R. Brooks and L. A. Stein. Building brains for bodies. Autonomous
Robots, 1:1:7--25, 1994.

177

[9] Rodney Brooks. L. IS Robotics Internal Technical Report, 1996.

[10] Rodney Brooks, Johanna Bryson, Matthew Marjanovi, Lynn
Stein, and Mike Wessler. Humanoid software manual. MIT AI
Lab internal document, 1996.

[11] Rodney A. Brooks. The behavior language user's guide. A.I. Tech-
nical Report 1227, Massachusetts Institute of Technology AI Lab,
Cambridge, MA, April 1990.

[12] Rodney A. Brooks, Cynthia Ferrell, Robert Irie, Charles C. Kemp,
Matthew Marjanovic, Brian Scassellati, and Matthew Williamson.
Alternative essences of intelligence. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98). AAAI
Press, 1998.

[13] Thomas J. Carew. Spinal cord I: Muscles and muscle receptors.
In E. R. Kandel and J. H. Schwartz, editors, Principles of Neu-
ral Science, chapter 25, pages 284-292. Edward Arnold, London,
second edition, 1981.

[14] George J. Carrette. SIOD: Scheme in one defun.
http://www.cs.indiana.edu/scheme-repository/imp/siod.html,
July 1996.

[15] John J. Craig. Introduction to Robotics. Addison-Wesley, Reading,
MA, 1986.

[16] Gary L. Drescher. Made-Up Minds: A Constructivist Approach to
Artificial Intelligence. MIT Press, Cambridge, MA, 1991.

[17] F. Ferrari, J. Nielsen, P. Questa, and G. Sandini. Space variant
imaging. Sensor Revi4ew, 15(2):18-20, 1995.

[18] Paul Fitzpatrick. From First Contact to Close Encounters: A
Developmentally Deep Perceptual System for a Humanoid Robot.
PhD thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering Computer Science, 2003.

[19] Paul Fitzpatrick and Giorgio Metta. Towards manipulation-driven
vision. In IEEE/RSI International Conference on Intelligent
Robots and Systems (IROS), Lausanne, Switzerland, 2002.

[20] Jean Dickinson Gibbons. Nonparametric Statistical Inference,
chapter 7. Marcel Dekker, New York, NY, second edition, 1985.

178

[21] Stan Gielen. Muscle activation patterns and joint-angle coordi-
nation in multijoint movements. In Alain Berthoz, editor, Multi-
sensory Control of Movement, chapter 19, pages 293 313. Oxford
University Press, 1993.

[221 Simon F. Giszter, Ferdinando A. Mussa-Ivaldi, and Emilio Bizzi.
Convergent force fields organized in the frog's spinal cord. Journal
of Neuroscience, 13(2):467-491, 1993.

[23] A. V. Hill. The heat of shortening and the dynamic constants of
muscle. Proceedings of the Royal Society of London, 126:136-195,
1938.

[24] Neville Hogan. The mechanics of multi-joint posture and move-
ment control. Biological Cybernetics, 52:315-331, 1985.

[25] MusculoGraphics Inc. SIMM Software Suite. Chicago, IL.
http://www.musculographics.com/.

[26] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of
the 30th Annual A CM Symposium on Theory of Computing, pages
604-613, 1998.

[27] Mark Johnson. The Body in the Mind. University of Chicago
Press, 1987.

[28] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement,
learning: A survey. Journal of Artificial Intelligence Research,
4:237-285, 1996.

[29] J. A. Scott Kelso. Concepts and issues in human motor behavior.
In J. A. Scott Kelso, editor, Human Motor Behavior: An Intro-
duction, chapter 2. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1982.

[30] George Lakoff and Mark Johnson. Metaphors We Live By. The
University of Chicago Press, Chicago, IL, 1980.

[31] Matthew Marjanovi6. sok user's manual. MIT Humanoid Robotics
Group, Cambridge, MA, November 2002.

[32] Matthew Marjanovi6, Brian Scassellati, and Matthew Williamson.
Self-taught visually-guided pointing for a humanoid robot. In
Pattie Maes, Maja J Matari6, et al., editors, From animals to
animats 4, pages 35-44, North Falmouth, MA, September 1996.

179

Fourth International Conference on Simulation of Adaptive Be-
havior (SAB96), MIT Press, Cambridge, MA.

[33] Matthew J. Marjanovi6. Learning functional maps between sen-
sorimotor systems on a humanoid robot. Master's thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1995.

[34] Maja J. Matari6, Victor B. Zordan, and Matthew M. Williamson.
Making complex articulated agents dance. Autonomous Agents
and Multi-Agent Systems, 2(1), July 1999.

[35] Thomas A. McMahon. Muscles, Reflexes, and Locomotion. Prince-
ton University Press, 1984.

[36] Giorgio Metta. Babyrobot, A Study on Sensori-motor Develop-
ment. PhD thesis, University of Genoa, Italy, 1999.

[37] Ferdinando A. Mussa-Ivaldi, Simon F. Giszter, and Emilio Bizzi.
Linear combinations of primitives in vertebrate motor control. Pro-
ceedings of the National Academy of Sciences, 91:7534-7538, Au-
gust 1994.

[38] Object Management Group. C Language Mapping,
formal/99-07-35 edition, June 1999. http://www.omg. org/-
technology/documents/formal/clanguage _mapping. html.

[39] F. Panerai and Giulio Sandini. Oculo-motor stabilization reflexes:
Integration of inertial and visual information. Neural Networks,
11, 1998.

[40] Jean Piaget. The Origins of Intelligence in Children. Norton, New
York, NY, 1952.

[41] David Pierce and Benjamin Kuipers. Map learning with unin-
terpreted sensors and effectors. Artificial Intelliqence Journal,
92:169-229, 1997.

[42] J. Pratt. Virtual model control of a biped walking robot. M.Eng.
thesis, department of electrical engineering and computer science,
Massachusetts Institute of Technology, Cambridge, MA, 1995.

[43] William H. Press et al. Numerical Recipies in C, chapter 2. Cam-
bridge University Press, Cambridge, 1992.

[44] Brian Scassellati. A binocular, foveated, active vision system. MIT
AI Memo 1628, MIT Artificial Intelligence Lab, Cambridge, MA,
March 1998.

180

[45] Brian Michael Scassellati. Foundations for a Theory of Mind for
a Humanoid Robot. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 2001.

[46] Stefan Schaal, Christopher G. Atkeson, and Sethu Vijayakumar.
Real-time robot learning with locally weighted statistical learn-
ing. In International Conference on Robotics and Automation,
San Francisco, April 2000.

[47] Gilbert Strang. Introduction to Linear Algebra. Wellesley-
Cambridge Press, Wellesley, MA, second edition, 1998.

[48] Matthew Williamson. Robot Arm Control Exploiting Natural Dy-
namics. PhD thesis, Massachusetts Institute of Techmology, De-
partment of Electrical Engineering and Computer Science, Cam-
bridge, MA, 1999.

[49] Matthew M. WilliamsLon. Series elastic actuators. A.I. Techni-
cal Report 1524, Massachusetts Institute of Technology AI Lab,
Cambridge, MA, January 1995.

[50] Matthew M. Williamson. Postural primitives: interactive behavior
for a humanoid robot arm. In Proceedings of the Fourth Interna-
tional Conference on Simulation of Adaptive Behavior (SAB-96).
Society of Adaptive Behavior, 1996.

[51] Jack M. Winters and Lawrence Stark. Estimated mechanical prop-
erties of synergistic muscles involved in movements of a variety of
human joints. Journal of Biomechanics, 21(12):1027-1041, 1988.

[52] Song-Yee Yoon, Robert C. Burke, Bruce Blumberg, and Ger-
ald E. Schneider. Interactive training for synthetic characters. In
AAAI/IAAI, pages 249-254, 2000.

181

